前回の感想と復習

前回の感想・コメント

 前回の授業に対する皆さんの感想・コメント(抜粋)が、

にあるので見ておいてください。

前回の復習

 前回は電場と電位の定義についてまで考えた。

 もう一度書いておくと

$$\vec E={1\over q}\vec F$$ $\vec E$:電場ベクトル〔N/C〕, $q$:試験電荷〔C〕, $\vec F$:電場から受ける力〔N〕

が電場の定義、

 $q$[C](クーロン)の電荷が電位$V$[V](ボルト)の電位の場所にいるときに持っている静電気力の位置エネルギーは$qV$[J]である。

が電位の定義である。

 ここで「電場だの電位だの、新しいのが出てきて頭がごちゃごちゃになる」という人に注意しておきたいのは、

という関係にあるから(同様に「電位差」は「単位電荷あたりのエネルギー差」であり、エネルギーの差は多くの場合仕事だから、「電位差」は「単位電荷に及ぼされる仕事」になる)、「力」と「エネルギー」の間の関係は、そのまま「電場」と「電位」の関係と同じだということである。力学と電磁気は別々に存在しているのではなく、互いにつながっている。そのことを無視して「新しい言葉だからまた新しく考え直し(暗記し直し)」のような勉強をすると、不経済な勉強をすることになり理解が進まない。

電気力線の力学的性質

 前回でも述べたことだが、大事なことなのでもう一度説明しておく。電気力線に、

電気力線の力学的性質

  • 張力が働く(なるべく短くなろうとする)。
  • 平行な2本は反発する(混雑を嫌う)。

という性質があると考えると、下の図で斥力や引力が働く理由を、この電気力線の性質から導かれるものと考えることができる。

 正電荷どうしの電気力線は混雑を嫌うことで電荷を引き離そうとし、異符号の電荷の電気力線は短くなろうとすることで電荷を近づけようとする。

 これは電気力線の密度すなわち電場の強さの増加関数であるような「電場のエネルギー」があると解釈しても理解できる。「短くなろうとする」のは電場が強い範囲を狭くしてエネルギーを下げるし、「混雑を嫌う」のは電場の強さを弱くしてエネルギーを下げる。電気力線自体がエネルギーを持っている力学的存在だと考えると、引力や斥力のイメージが理解できる。

 電気力線は「電場」のイメージなので、エネルギーを持っているのは「電場」である。何もないように見える真空にも「電場」は存在し、エネルギーを持っている。だからいろんなものに力を及ぼすことができる。この「空間に物体を押したり引いたり、エネルギーを貯めたりすることができる力学的な「もの」があるというのが「場」の概念である。

 ↓前回も使った、電気力線表示のアプリ。
 電磁気を理解するときに大事なのが「場」の概念(今の場合は「電場」の概念)だが、電気力線は電場を図で表現する手段である。だから、上で述べている「電気力線の力学的性質」というのは、電場というものが持っている力学的性質なのである。何もないように見える「空間」にも電場(そして後から出てくる磁場)があるというのが「場」の概念である。
クーロンの法則とガウスの法則

クーロンの法則とガウスの法則

 ↓は、以下にある説明のビデオ版

クーロンの法則とガウスの法則

 実験的に見つかった「クーロンの法則」は

クーロンの法則

 距離$r$離れた電気量$Q$の点電荷と電気量$q$の点電荷の間には、 $F={kQq\over r^2}$の力(同符号では斥力、異符号では引力)が働く。

という法則だが、これは点電荷どうしの式であることに注意が必要である。

 この「距離の自乗に反比例」という性質は、「光源からの距離と明るさの関係」に似ている。

 こう考えると、「電荷からなにかが放射されている」というイメージで電場の伝搬を考えたくなる(実際になにかが出てきているわけではない。以下で説明する電気力線は、あくまで「電場」というものを説明するためのイメージであって、実際にそういう「線」があるわけではない。また「電気力線が$n$本」という計算をすることもあるが、1本2本と数えられるものでもない。

 その「なにかの放射」にあたる量として、電場の方向を向いて伸ばした線である「電気力線」を定義し、電気力線は正電荷で始まり負電荷で終わり、途中で合流・分裂したり電荷以外の場所では途切れないと考える。電気力線は各点各点で電場の向き(その場所に仮想的に正の試験電荷を置いたとしたら受ける力の向き)を向くように伸ばした線であり、単位面積あたりの密度が電場の強さに等しい(電気力線で電場の向きと強さを表現している)。

 このように定義された電気力線は、途中で合流したり分裂したりすることがない(上の光源から出た光のアナロジーは、途中で電気力線が合流したり分裂したりすると成り立たない)。また、正電荷で始まり負電荷で終わる(それ以外の場所では発生も消滅もしない)。このことから、以下の法則が言える。

静電場に関するガウスの法則

電荷 $Q$から$4\pi k Q$本の電気力線が出る($Q$が負の場合は吸い込む)。

 ガウスの法則は(電気力線の定義を含め)静電場に関する物理法則である。電気力線は途中で途切れることなく3次元に広がり、その面積密度が電場の強さに等しいとすれば、 $$ E={4\pi k Q\over 4\pi r^2}={kQ\over r^2} $$ となってクーロンの法則が導かれる。

前回の復習 電気力線と電場

電気力線と電場

 ここで、コンデンサの極板の間の電場を求めるという問題を考えよう。

 平行平板コンデンサとは、互いに平行な2枚の板(極板と呼ぶ)を向かい合わせたものである。このような板の一方に$+Q$、もう一方に$-Q$の電荷を帯電させた場合、電気力線のほとんどは極板間に集中する。

↓のアプリで、コンデンサを作ってみよう。

↑を使うと、

のようなコンデンサの作る電場などの絵が描ける。

 コンデンサの極板間の電場の強さは、近似として「電気力線は極板と極板の間にしか存在しない」と考えれば非常に簡単に計算できる。

 コンデンサの極板の面積を$S$とすると、面積$S$の中に電荷$Q$から出て電荷$-Q$に入る電気力線(全部で$4\pi k Q$本)が入っていることになる。したがって、極板の間にできる電場の強さは${4\pi k Q\over S}$となる。

 なお、実際には図のように極板から外にも電場は染み出るものなので、この計算はあくまで近似である。

 コンデンサの極板に溜まった電荷はもちろん「点電荷」ではないから、クーロンの法則は使えない。もし使うとしたら、極板を微小な部分にわけて点電荷とみなしてからその足し算(具体的には積分)を行う。こういう場合はガウスの法則の方が圧倒的に使い勝手がよい。

 ここで以下のような問題を考えてみよう。

のように、コンデンサの極板間の距離を2倍にしたら電場はどう変化するだろうか?

答えはここをクリック。考えてから開こう。

せっかく暗記したから公式を使いたい病にかかっていると、「距離が2倍だから${1\over4}$倍」という大間違いを起こす(実際高校生や大学生に質問してみると全体の3分の1ぐらいがそう答える)。

 この場合電気力線の密度が変わらないのだから電場も変わるわけがない。計算して${4\pi kQ\over S}$という(極板間距離によらない)答えが出てくるのだからそれを信じればいいのだが、ついつい「直感」に流されて間違える人が多い。もう一度強調しておくが、逆自乗の法則はガウスの法則と「点電荷から出た電気力線が遠方に行くほど広がる」ということからの「結果」である。電磁気学にとって「原理」であるのはガウスの法則の方だから、そちらを尊重して考えなくてはいけない。

なお、実際には変わらないわけではなく、距離が遠くなると「コンデンサーの境界部分で電気力線が染み出さない」という近似が使えなくなるから少し電場は弱くなる(上の図でも、少し弱くなっている)。

 法則には「適用範囲」があるものが多い(クーロンの法則なら「点電荷」が条件である)。そこを考えないで「公式だから」と使ってはいけない。また、将来の生徒にそういう教え方をしてはいけない。

 ガウスの法則のイメージを掴むには、いろんな配置でできる電場と電位を理解するのがよい。

正電荷をのような配置すると、電気力線と等電位線はどのようになるか。予想しながらやってみよう。
答えはここをクリック

 電気力線は

 等電位線は

のようになる。

 円状に配置した電荷の内側には電気力線はいなくなり、電位は一様になる(電位を「架空の高さ」と考えると「平地」になる)。これはガウスの法則を考えると「内側には電荷はいないのだから出ていく電気力線もない」ということである。なお、それは対称性がいい場合の話で、対称性がくずれると、

のように「漏れ」が生じる。

 もう一つ、以下をやってみてもらいたい。

正電荷と負電荷(同じ数)をのように配置すると、電気力線と等電位線はどのようになるか。予想しながらやってみてください。
答えはここをクリック

 電気力線は

 等電位線は

のようになる。

 つまり、正電荷から出た電気力線は全部負電荷に吸われる。結果として外側と中央部は電気力線がなく、電位は平坦になる。

クーロンの法則とガウスの法則 磁力線の性質

磁力線の性質

 テキスト86ページからの「磁力線とその物理的性質」のところも読んでおこう。

 次に磁場(磁界)について考えていく。磁石を「N極(正の磁極)」と「S極(負の磁極)」でできているものと考えて、正負の磁極を正負の電荷と同様に考えれば、磁極のつくる磁場の様子は電荷が作る電場と同様である。

 磁力線を描くアプリが↓あるのでいろいろやってみて欲しい。

 ↓は、このアプリの使い方説明ビデオ

 上のアプリで、N極とS極だけを出してやってみると、それは正電荷と負電荷の作る電気力線と全く同様であることがわかる。

 ↓は、アプリで磁極に働く力を解説

 ここまでだと、磁場と電場の違いはなく、ある意味あまり面白くない。まず最初の面白いところ、つまり磁場と電場の大きな違いは、磁極によってのみではなく、電流によっても作られるということである。そもそも磁極というのはなくて、すべて電流だと言った方が正しいかもしれない。磁石の磁場は、原子内に流れる電流が原因といってもいい。

 電流の作る磁場の磁力線は、アプリで作ってやるとわかるが、

のように電流をめぐる形状となり、電気力線の場合の「正電荷で始まって負電荷で終わる」ような端点を持たない。途中で途切れたり分裂したり合流したりしないという性質は電気力線と同じである。

 ↓は、アプリで電流と磁極に働く力を解説

 電気力線の力学的性質と同じ性質が、磁力線にもあり、

磁力線の力学的性質

  • 張力が働く(なるべく短くなろうとする)。
  • 平行な2本は反発する(混雑を嫌う)。

とまとめることができる。上のビデオでも説明したように、この磁力線の力学的性質から磁極と電流の間に働く力を考えることができる。

 ↓の図は磁極(N極)による磁場と電流(裏から表へ)による磁場が重なった結果の磁力線である。

 電流の左側では磁場が弱め合うことで弱い(磁力線の密度が小さい)磁場となり、右側では磁場が強め合うことで強い(磁力線密度の大きい磁場)ができる。

 磁力線は「混雑を嫌い、短くなろうとする」ので電流と磁極には磁力線の混雑を緩和し、長さを短くする方向へと力が働くことになる。

 働く力は

のようになる。磁極に働く力は電流の作る磁場による力と考えれば納得できる。電流に働く力はいわゆる「ローレンツ力」であり、別の物理法則として扱われることも多いが、今述べたように磁力線の力学的性質から導くこともできる。

 興味深いのは、この力は作用・反作用の法則のうち「作用・反作用の作用線が一致する」という部分を満たしていないことである(逆向きで大きさが同じ、という点は満たしている)磁場(磁力線)を物理的実体のあるものと考えて、磁場に働く力まで考えてやれば、ちゃんと作用・反作用の法則を満たす。

 磁場の力は電場の力と似ているような違うような関係があるが、電気力線と磁力線の力学的性質にまで還元すると、この二つはほぼ同一と言える(電気力線や磁力線がどのように発生するかのメカニズムは違う)。

 電気の法則と磁気の法則はそれぞれつながっており、別々に存在しているものではない(またこれが「エネルギーを低くする方向へと力が働く」という意味で力学ともつながっているわけである)。

すでに述べたことだが、もう一度、確認しておく。物理を理解して(そして教えて)いく過程ではこのような「つながり」を作っていくことが大事で「この問題はこの法則、この公式ね」のような「各個撃破」をやってはいけないのである(特に教える側は!)。

 今日はここまでにして、次回、もう少し磁場について考えていくことにします。

 以上で第10回の授業は終わりです。

アプリでの場合の磁力線を描いてみよう。描かれた磁力線を見てそれぞれ、2本の導線に「引力が働くか」「斥力が働くか」を答えてください。

 次回はこれの答えから始めます。

 各自のwebclassへ行って、

  • 第10回授業感想・コメントシート
に答えてください。【クイズ】も入ってます(成績には反映しません)。

webclass↓


この感想・コメントシートに書かれたことについては、代表的なものに対しては次のページで返答します。
電気力線と電場 受講者の感想・コメント

受講者の感想・コメント

 青字は受講者からの声、赤字は前野よりの返答です。

 主なもの、代表的なもののみについて記し、回答しています。


桃色の背景の文字、今回であれば(磁場(磁力線)を物理的実体のあるものと考えて、磁場に働く力まで考えてやれば、ちゃんと作用・反作用の法則を満たす。)など。 今されですが、小さくて見えにくいです。何か意図があると思ってきましたが、やはり大きくすべきだと思います。
これは元々「脚注」(最初に読むときは読まなくていい情報)なので小さい文字(50%)にしていたのですが、小さすぎるということなので少し大きく(80%)にしました。

円状に配置した電荷の内側には電気力線がなくなるとは思いませんでした。電荷の配置による電気力線と電場の関係が図から詳しくわかりました。想像していたものと、実際の図では違ったので実際の図を見るということは大事だと思いました。
あれは2次元の話なので、実際には3次元的な「球の表面」に電荷が対称に配置されると、球内部の電気力線がなくなります。

電流の範囲は高校で躓いていた友達も多かったので丁寧に理解しようと思いました。
電気はわかりにくいと感じる人が多い分野なので、丁寧に理解して説明しましょう。

クーロンの法則の解説に光源と距離の関係を例として出してもらえたので視覚的に分かりやすかったです。
視覚的イメージを作りながら、物理を勉強していきましょう。

コンデンサーの距離を離した時、電場はどうなるかの問題で小さくなると考え、間違えてしまったので気を付けたい。
あれは頻出ミスです。気をつけましょう。

公式を当てはめるのではなく、正しく理解したいと思った。
そこはしっかりやりましょう。

図を書くのが難しかったです。
図は大事ですよ。

アプリを使った学びは生徒にとっても強い興味を引くことが出来ると思ったので、こういった物理学だけでなくコンピュータに関する知識も身に付けたいと思った。
いろんな教材が使える時代ですから、どんどん使っていきましょう。

頭の中であいまいである場の概念をしっかり理解したいと思う。
「場」がわからないと電磁気はわからないので、そこはしっかり作っていきましょう。

 磁場の力は電場の力と似ているような違うような関係があるが、電気力線と磁力線の力学的性質にまで還元すると、この二つはほぼ同一と言える(教材より)  電気の法則と磁気の法則はそれぞれつながっていて、別々に存在しているものではなく、力学の要素も含まれていて面白みを感じた。  「この問題はこの法則、この公式ね」のような「各個撃破」をやってはいけないということを胸に深く刻みたい。  物理は繋がっていると思うので、繋がりを大事にして学びたい。
そうです、つながりが大事なんです。

警戒レベル(?)が下がると他の講義で耳にしました。 それに伴ってこの講義において授業の形式を多少変えるなどの変更点が生じる場合があれば教えていただきたいです。
この授業については遠隔で最後までやる予定です。試験をどうするかについては考え中です。

電場と磁場について詳しく考えたことがなかった(電場=磁場としか考えたことがなかった)ので、とても勉強になったし、とても興味深かった。また何回かこの講義を振り返って復習してしっかりと理解していきたい。
電場と磁場はもちろん違うもので、互いに関係しあっているところが面白いところです。

今回の授業で、電場の考えが深まった。しかし、まだきちんと頭に入ってないようなので、今後も復習していく。
復習しよう!

電気力線と磁力線について、学ぶことができた。複数の電荷による電気力線と等電位線を描くプログラムで、円形に電荷を並べた時がとても、面白い線が描かれて興味深かった。
いろいろと試してみて、電場・磁場への理解を深めてください。

スマホとパソコン、両方でやってみましたが、磁力線が書けませんでした。すみません。
調べるので、スマホとパソコンの機種や使っているソフトなどを教えてください。

クイズのような、同行電流どうしと同行電流と逆行電流のk見合わせで、引力なのか斥力なのかを機械的に覚えていたが、きちんと理解することができた。
物理は(何の学問でもそうなんだけど)つながりを理解していくことが大事ですね。

一度受講するだけではわかりにくかったので、シュミレーションなどを使い復習します。
シミュレーションはぜひ、何度も何度も使ってイメージをつかみましょう。

アニメーションで条件を変えた場合を確かめることができた。磁場が電場と同じように考えることができ、つながりを意識すると原理原則が当てはまり理解しやすかった。
同じところ、違うところを認識して、理解していってください。

今まで公式を記号のように暗記で覚えていたので、なぜその公式に至るのかの説明で成り立ちを考えることで理解が深まりました。将来教える側になると考えた時、理由づけや成り立ちまでの過程の説明は、理解するうえで重要だと感じました。
「記号のような暗記」は駄目で非効率的な勉強なので、自分が教える立場になったときにそんな方法を生徒がしないような、そんな教員を目指してください。

電気力線の密度が変わらないと電場も変わらないという点を見落としてなんとなくで答えて誤答をしてしまうのを気を付けたいと思った。
人間が「なんとなく」で認識していることは間違っていることが多いです。気をつけよう。

磁力線の性質