#author("2020-11-06T20:01:07+09:00","","")
#mathjax
*「よくわかる量子力学」(東京図書)サポート掲示板 [#c0a3fd5b]

[[よくわかる量子力学サポートページに戻る>http://irobutsu.a.la9.jp/mybook/ykwkrQM/]]

-[[mathjax>http://www.mathjax.org/]]を使って、TeX形式で数式を打てるようにしてあります。$または$$(もちろんほんとは全角じゃなく半角の「ドル」です)で囲んで入力してください。
-spam避けに、httpを含む文章と、英字のみの文章は登録できなくしてあります。



#article
**p=h/λの導出について [#o7abda37]
>[[物理独学生]] (2020-11-06 (金) 17:29:34)~
~
よくわかる量子力学には上式の導出が書かれていなかったので解析力学の正準方程式と時間に依存するシュレーディンガー方程式を使って導出してみました。正しいかどうかを確かめてもらいたいです。よろしくお願いします。\[\displaystyle\frac{dp}{dt}=-\frac{\partial H}{\partial x}\]~
\[\displaystyle\frac{dp}{dt}\psi=-\frac{\partial H}{\partial x}\psi\]~
\[\int_{t_1}^{t_2}\displaystyle\frac{dp}{dt}\psi dt\\=-\int_{t_1}^{t_2}\frac{\partial H}{\partial x}\psi dt\\\]~
\[\int_{t_1}^{t_2}p\frac{\partial \psi}{\partial t} dt\\=\int_{t_1}^{t_2}\frac{\partial\frac{H\psi}{\psi}}{\partial x}\psi dt\\\]~
\[\int_{t_1}^{t_2}p\frac{\partial \psi}{\partial t} dt\\=-\int_{t_1}^{t_2}\frac{\partial \psi}{\partial x}\frac{1}{\psi}i\hbar\frac{\partial \psi}{\partial t} dt\\\]~
\[-\frac{\partial \psi}{\partial x}\frac{1}{\psi}i\hbar\frac{\partial \psi}{\partial t} =p\frac{\partial \psi}{\partial t}\]~
\[-i\hbar\frac{\partial \psi}{\partial x}=p\psi\]~

//
- 4個目の式から5個目の式では時間に依存するシュレーディンガー方程式を使い、ライプニッツ則を使って展開したうえで表面項を無視しましたた -- [[物理独学生]] &new{2020-11-06 (金) 17:34:58};
- ψ=Aexp[i(kx-ωt)]とするとp=hk/2π=h/λとなると思いました。 -- [[物理独学生]] &new{2020-11-06 (金) 17:38:23};
- 全然だめです。一個めの式は古典論の式で、Hya -- [[前野]] &new{2020-11-06 (金) 20:01:07};

#comment

**シュレディンガー方程式 [#h4335ee5]
>[[あいうえお]] (2020-10-20 (火) 09:02:39)~
~
よくわかる量子力学ではシュレディンガー方程式を導出する時に~
ψ=Aexp[i(kx-ωt)]を代表にして導出しているのですが、~
Aexp[i(kx+ωt)]をシュレディンガー方程式に代入すると解ではないことがわかります。なぜ進行方向が異なるだけのこれらにこのような差ができるのかわからず困っています。よろしくお願いします~

//
- これはシュレーディンガー方程式が「正のエネルギーの解だけが出るように作られた方程式だから」という理由だと思います。量子力学ではエネルギーに対応するのが$i\hbar{\partial\over\partial t}$なので$e^{-i\omega t}$は正エネルギーですが$e^{i\omega t}$は負エネルギーになります(もちろん、$\omega>0$です)。 -- [[前野]] &new{2020-10-20 (火) 10:40:09};
- なお、厳密には正エネルギーとは限らず「エネルギーに下限があること」が必要です。ただし、今考えている$e^{ikx-i\omega t}$が解になるシュレーディンガー方程式は自由粒子のものなので、エネルギー${p^2\over 2m}$は正しかありえません。 -- [[前野]] &new{2020-10-20 (火) 10:42:29};
- わかりやすい説明ありがとうございました。自由粒子であることとエネルギーが正であることがポイントなのですね。 -- [[あいうえお]] &new{2020-10-20 (火) 20:57:20};
- 何度もすいません。エネルギーの演算子が上記のようになるのはψ=Aexp[i(kx-ωt)]と仮定したからであり堂々巡りになっている気がします。それとも他の方法で導出できるのでしょうか。よろしくお願いします。 -- [[あいうえお]] &new{2020-10-27 (火) 21:06:28};
- エネルギーが正であることも、それがhνと表されることも(つまり$e^{-i\omega t}$の形の波が出てくることも)、実験事実であり、そうなるようにシュレーディンガー方程式を作ります。 -- [[前野]] &new{2020-10-27 (火) 23:13:50};
- エネルギーがマイナスにならないのはそうなるような方程式を作ったからで、どうしてそうなるように作るかといえば現実がそうなっている(と実験が示している)からです。「実験に合うように」で終わるので、堂々めぐりということにはならないと思いますが。 -- [[前野]] &new{2020-10-27 (火) 23:15:52};
- ありがとうございました。 -- [[あいうえお]] &new{2020-11-06 (金) 13:28:21};

#comment

**P219の式(10.45) [#o0de6daa]
>[[草間]] (2020-10-17 (土) 16:49:56)~
~
cosKa=-1に近づくとAの前の係数の絶対値が1に近づくとありますが、cosKa=exp(iKa)が実数ならば分子と分母は共役になるので、cosKaの値に関係なく1になると思うのですが。どうか宜しくお願い致します。~

//
- まず、cos(Ka)≠exp(iKa)です。Ka=(整数)×πのとき以外はcos(Ka)=exp(iKa)になりません(さらにいえば、このときだけexp(iKa)は実数です。 -- [[前野]] &new{2020-10-17 (土) 16:59:45};
- cosKa≠exp(iKa)は理解できましたが、cosKa=-1でAの前の係数の絶対値が1に近づくのが解らないのですが。どうか宜しくお願い致します。 -- [[草間]] &new{2020-10-17 (土) 17:53:02};
- そこから先は御自分でおっしゃってる通りです。exp(iKa)が-1という「実数」になれば考えている式の絶対値は1でしょ? -- [[前野]] &new{2020-10-17 (土) 18:00:45};
- 何回もすいません。Aの前の係数の絶対値が1になるのは、cosKaが実数であればよいという事でしょうか。cosKaが常に実数ならば、やはり−0.5あたりから−1に近づくにつれてAの前の係数の絶対値が1に近づく理由が解らないのですが。 -- [[草間]] &new{2020-10-17 (土) 18:45:48};
- なんかまた混乱しているようですが、cos Kaはいつだって実数ですから「cos Kaが実数であれば」という条件は常に成り立ちます。 -- [[前野]] &new{2020-10-17 (土) 18:54:54};
- exp(iKa)が実数という条件は、いつでも成り立つ訳ではありません。しかしこれが実数(今の場合は$-1$)なら、Aの前の係数の絶対値は1になります(その時は係数が$-{e^{ika}+1\over e^{-ika}+1}$で、これが絶対値1なのは、上で御自分が書いているとおりです)。 -- [[前野]] &new{2020-10-17 (土) 18:57:51};
- $e^{iKa}$が$-1$じゃないときは、ある複素数(たとえば$c$としましょうか)になるので、係数は$-{e^{ika}+c\over e^{-ika}+c}$です。これは絶対値は1じゃありません(分子と分子は互いに共役になってない)。 -- [[前野]] &new{2020-10-17 (土) 19:03:03};
- 何回もすいません。Aの前の係数の絶対値が1になるのは、cosKaが実数であればよいという事でしょうか。cosKaが常に実数ならば、やはり−0.5あたりから−1に近づくにつれてAの前の係数の絶対値が1に近づく理由が解らないのですが。 -- [[草間]] &new{2020-10-17 (土) 20:08:09};
- cosKaのKaがnπのときだけexp(i Ka)が実数となって、 -- [[草間]] &new{2020-10-17 (土) 20:13:53};
- Aの前の係数の絶対値が1に近づくことが -- [[草間]] &new{2020-10-17 (土) 20:14:26};
- 理解できました。どうもありがとうございました。 -- [[草間]] &new{2020-10-17 (土) 20:15:05};

#comment

**無題 [#x7f29fc9]
>[[eita]] (2020-09-16 (水) 14:28:29)~
~
p132の(6.36)式がなぜ成り立つのかが分かりません。脚注にも書いてある通り、p118の問い6-1(4)では一変数f(x)の常微分ですが、ここでは偏微分になっています。f(x)が多変数関数でもこの式が成り立つかどうかを自分で確かめようとしたのですが分からないので教えてほしいです。~

//
- 偏微分は「考えている変数以外は定数とみなして微分する」という微分だと考えていいです。ここではxとの交換関係を考えていますが、xと交換しないのはpだけですから、「xと交換関係を考える」という文脈においてはp以外の変数は定数扱いして構わないです。よってこれは偏微分と同じ計算です。 -- [[前野]] &new{2020-09-16 (水) 14:41:19};
- すいませんよく分からないので、もう少し詳しく教えてもらえますか?変数がxとpしかなく、xとxが交換するのは自明ですから、xと交換しないのがpだけだというのは分かります。その後の、「xと交換関係を考える」という文脈において、p以外の変数(つまりx)を定数扱いして考えていい理由が分かりません。 -- [[eita]] &new{2020-09-18 (金) 12:12:32};
- 交換関係は[A,BC]=[A,B]C+B[A,C]が成り立ちます。もし[A,B]=0なら、[A,BC]=B[A,C]になります。BCがもっと複雑な関数f(B,C)だったとしてもその中のBの部分は交換関係においては定数扱いされているのと同じことです。 -- [[前野]] &new{2020-09-18 (金) 19:10:44};
- もし、[A,C]の結果が数(他の全ての演算子と交換)なら、[A,f(B,C)]=[A,C](∂f/∂C)となります。 -- [[前野]] &new{2020-09-18 (金) 19:12:42};
- [A,BC]はB[A,C]とできるので、Bが定数扱いになっていることは理解できました。しかし、だからといってBCがもっと複雑な関数f(B,C)であってもその中のBの部分が交換関係において定数扱いされていることは、言えるのですか?直感的にはそうである気がしますが、論理的に飛躍していると思います。数学的な証明が欲しいです。それとも、私が考えているよりもっと単純に分かるのでしょうか? -- [[eita]] &new{2020-09-28 (月) 14:34:28};
- たとえば複雑な関数でも、テイラー展開できるような関数であれば、任意の関数が$(B以外)B(B以外)B(B以外)\cdots$のような項の足し算で書けます。-- [[前野]] &new{2020-09-28 (月) 16:38:19};
- この各々の項と交換関係を取るとすると、交換関係によって変化するのは「$B以外$」の部分だけです。 -- [[前野]] &new{2020-09-28 (月) 16:40:06};
- $[A,B以外]$という交換関係の結果は(今$[A,C]$が定数なので$[A,C]$は任意の場所に持ってくることができて))$[A,C]{\partial (B以外)\over \partial C}$とできます。 -- [[前野]] &new{2020-09-28 (月) 16:43:54};
- $B以外$と書いた部分はそれぞれ別なので、$B\times g(C)\times B\times h(C)\times \cdots$と書いたとすると、これと$A$の交換関係を取れば$B[a,g(C)]Bh(C)\times\cdots+B g(C) B[A,h(C)]\times \cdots + \cdots$という感じになって、これは$[A,C]\times$元の関数を$C$で微分したもの、です。 -- [[前野]] &new{2020-09-28 (月) 16:46:28};

#comment

**エルミート多項式について [#jabcbba7]
>[[物理独学生]] (2020-09-04 (金) 21:21:59)~
~
P230で\[H_n\](ξ)の最高次\[\xi^n\]の係数が\[2^n\]になると書いてあるのですがこの根拠は何なのでしょうか。基本的な質問ではあると思うのですがよろしくお願いします。~

//
- mathjaxに慣れておらず読みにくくなってしまいました。すいません。 -- [[物理独学生]] &new{2020-09-04 (金) 21:26:00};
- 書き直します。 -- [[物理独学生]] &new{2020-09-04 (金) 21:29:30};
- うまく数式の位置をずらせなかったので、すみmせんが、このままでよろしくお願いします。 -- [[物理独学生]] &new{2020-09-04 (金) 21:44:21};
- 「なる」とは書いていません。「している」です。つまりそうなるようにしただけなので根拠はありません。 -- [[前野]] &new{2020-09-04 (金) 21:46:43};
- そういうふうにした理由は、あとでまとめる形に合わせたからです。慣習であるといってもいいです。 -- [[前野]] &new{2020-09-04 (金) 21:47:15};
- ありがとうございました。 -- [[物理独学生]] &new{2020-09-05 (土) 07:54:18};

#comment

**無題 [#z55565f7]
>[[eita]] (2020-08-31 (月) 14:51:04)~
~
p99に複素成分の波は初期状態の中に「波がどちら向きに進行しているか」という情報が入っているとの記述がありますが、それがなぜか分かりません。$-ωt$が後に付くか、$ωt$が後に付くかでどちらに進行するか変わってくるのではないでしょうか?~

//
- シュレーディンガー方程式の解の話をしているので、後ろにつくのは常に$e^{-i\omega t}$の形です。$e^{i\omega t}$は解になりません。$\omega$は通常正です。 -- [[前野]] &new{2020-08-31 (月) 16:55:25};

#comment

**無題 [#h1574513]
>[[元物理学者]] (2020-08-31 (月) 11:42:42)~
~
量子力学では運動量がp=h/λであらわされますけど左辺はベクトル量で右辺はスカラーになっていて不自然に感じます。こういうことはよくあることなのでしょうか。よろしくお願いします。~

//
- $p={h\over\lambda}$のときの$p$は「運動量の大きさ」でスカラーです。ベクトルとしての運動量なら$\vec p=\hbar\vec k$($\vec k$は波数ベクトル)となります。 -- [[前野]] &new{2020-08-31 (月) 16:53:29};
- わかりやすい説明ありがとうございました。助かりました。 -- [[元物理学者]] &new{2020-08-31 (月) 18:26:56};
- わかりやすい説明ありがとうございました。助かりました。 -- [[元物理学者]] &new{2020-08-31 (月) 18:26:58};
- よくわかる量子力学で物質波はスカラー波であり向きはないと書いてあります。こうすると波数kの向きがなくなり結果的にpの向きも分からなくなるように思えてしまい     ます。どういうことなのでしょうか初歩的 な質問だとは思いますがよろしくお願いします。 -- [[物理独学生]] &new{2020-09-01 (火) 11:37:40};
- 波には「進行方向」と「振動方向」があり、この二つの方向は独立です(同じ向きなら縦波、垂直なら横波)。スカラー波というのは縦波でも横波でもなく、その「振動方向」が空間のどっち向きでもない、という意味であり、「進行方向」がないわけではありません。 -- [[前野]] &new{2020-09-01 (火) 19:49:23};
- 波数ベクトルの向きは進行方向です。 -- [[前野]] &new{2020-09-01 (火) 19:51:22};
- よく分かりました。ありがとうございました。 -- [[物理独学生]] &new{2020-09-01 (火) 20:42:04};
- よく分かりました。ありがとうございました。 -- [[物理独学生]] &new{2020-09-01 (火) 20:42:04};

#comment

**運動量表示(続) [#ke3accfd]
>[[Yoshitake]] (2020-07-03 (金) 10:23:55)~
~
すみません、もう一点追加で質問させてください。~
p82ではアインシュタインとドブロイの関係式から、波動関数をxで微分して$-i\hbar$をかけると運動量が出てくると考えて~
$p\psi = -i\hbar \frac{\partial}{\partial x}\psi$と置き換えていると思うのですが、これと、下の$\hat{p}|x\rangle = i\hbar \frac{\partial}{\partial x}|x\rangle$の関係はどのようになっているのでしょうか?一見すると符号が逆になっていると思うのですが。~

//
- 符号は逆にはなってません。本にも書いてありますが、$\psi(x)=\left<x\big|\psi\right>$で、$\hat p$を微分に置き換えたときの微分は、$\left<x\right|$に掛かります。 -- [[前野]] &new{2020-07-03 (金) 18:32:13};
- ありがとうございます。すっきりしました。$\hat{p}\psi(x) = \hat{p}\langle x|\psi\rangle = \langle x|\hat{p}^\dagger|\psi\rangle = \langle x|\hat{p}|\psi\rangle = -i\hbar \frac{\partial}{\partial x}|\psi\rangle$ということですね。 -- [[Yoshitake]] &new{2020-07-03 (金) 21:51:10};
- もう一つ、$\hat{p}|x\rangle = i\hbar \frac{\partial}{\partial x}|x\rangle$の関係式は位置が定まった状態ベクトル$|x\rangle$ではない、一般の状態ベクトル$|\psi\rangle$では成り立たない、ということで正しいでしょうか?つまり、$\hat{p}|\psi\rangle = i\hbar \frac{\partial}{\partial x}|\psi\rangle$は一般には正しくないということでよろしいでしょうか? -- [[Yoshitake]] &new{2020-07-03 (金) 21:55:24};
- それですっきりしちゃだめです。 $\hat p\psi(x)$も、$\hat p\left<x\big|\psi\right>$も、おかしい式です。演算子はブラかケットに掛かるもので、ブラケットの外には掛かりません。 -- [[前野]] &new{2020-07-03 (金) 23:52:18};
- $\left|\psi\right>$というのは列ベクトルのようなもの(ブラの方は行ベクトルのようなもの)で、演算子は行列のようなものです。ブラとケットで内積を取ったあとで演算子を掛けるのは、変な計算だし、当然$\hat p\left<x\big|\psi\right>=\left<x\big|\hat p\big|\psi\right>$は成り立ちません。 -- [[前野]] &new{2020-07-03 (金) 23:58:18};
- $\hat p\left|\psi\right>=i\hbar{\partial\over\partial x}\left|\psi\right>$は、「一般的には」どころか、「どっからどうみても正しくない式」です。そもそも$\left|\psi\right>$は$x$の関数じゃないのに、$x$で微分している意味がわかりませんし(無理やり微分するとしたら0かな?) -- [[前野]] &new{2020-07-03 (金) 23:54:01};
- もちろん、$\hat p\left|\psi\right>$は0でない一つの状態ベクトルです。ブラとケットがベクトルで、間に入る$\hat p$が演算子であるという意味がわかってないのではないかと思われます。 -- [[前野]] &new{2020-07-03 (金) 23:55:27};
- すみません、基本的なことが分かっていなかったです。 -- [[Yoshitake]] &new{2020-07-04 (土) 02:29:24};
- 元々の質問ですが、結局、p158の$\langle x|\hat{p} = -i\hbar \frac{\partial}{\partial x}\langle x|$の両辺に$|\psi\rangle$をかけて、これが特に$\hat{p}$の固有関数になっている場合に、p82の$p\psi(x) = -i\hbar \frac{\partial}{\partial x}\psi(x)$が出てくる、ということなんですね(?)。 -- [[Yoshitake]] &new{2020-07-04 (土) 02:55:32};
- ↑「固有関数」ではなくて「固有ケット」の間違いです -- [[Yoshitake]] &new{2020-07-04 (土) 02:56:44};
- もう一つ別のことをお聞きしたいのですが、p117で$\left(\frac{\partial}{\partial x}\right)^\dagger = -\frac{\partial}{\partial x}$となっていますよね。それで、p158の式(7.74)式$\langle x|\hat{p} = -i\hbar \frac{\partial}{\partial x}\langle x|$の両辺の$\dagger$をとると、左辺は$\hat{p} |x\rangle$となるのは良いのですが、右辺は、$i$と$\frac{\partial}{\partial x}$の符号がひっくり返って$-i\hbar \frac{\partial}{\partial x}|x\rangle$になってしまうのではないかと思ってしまったのですが、どこがおかしいのでしょうか?(何度もすみません・・・) -- [[Yoshitake]] &new{2020-07-04 (土) 03:04:10};
- 「これが特に$\hat p$の固有ケットになっている場合に」→固有ケット(になっている必要はありません。$\psi$がどんな状態でも、$x$表示では$\hat p$は$-i\hbar{\partial \over \partial x}$です。-- [[前野]] &new{2020-07-04 (土) 08:53:20};
- p117は「$\psi^*(x)=\left<\psi\big|x\right>$と$\psi(x)=\left<x\big|\psi\right>$を掛けて$x$積分」の間に${\partial \over \partial x}$を挟むという計算において、この微分がどっちに掛かるかによってどう変わるかという話をしてます。  -- [[前野]] &new{2020-07-04 (土) 08:58:57};
- それに対して${\partial\over\partial x}\left|x\right>$の共役が${\partial \over\partial x}\left|x\right>$だというときは、$x$の関数である$\left|x\right>$を微分してます。 -- [[前野]] &new{2020-07-04 (土) 09:00:22};
- 微分の定義に戻って考えると、${1\over \Delta x}\left(\left|x+\Delta x\right>-\left|x\right>\right)$というベクトルの共役を取っているだけです。結果は${1\over \Delta x}\left(\left<x+\Delta x\right|-\left<x\right|\right)$ -- [[前野]] &new{2020-07-04 (土) 09:02:21};
- p117でマイナスがついた理由は「部分積分をするから」です。ここでは部分積分の出番はありません。 -- [[前野]] &new{2020-07-04 (土) 09:02:59};
- もう一つ別のことをお聞きしたいのですが、p117で$\left(\frac{\partial}{\partial x}\right)^\dagger = -\frac{\partial}{\partial x}$となっていますよね。それで、p158の式(7.74)式$\langle x|\hat{p} = -i\hbar \frac{\partial}{\partial x}\langle x|$の両辺の$\dagger$をとると、左辺は$\hat{p} |x\rangle$となるのは良いのですが、右辺は、$i$と$\frac{\partial}{\partial x}$の符号がひっくり返って$-i\hbar \frac{\partial}{\partial x}|x\rangle$になってしまうのではないかと思ってしまったのですが、どこがおかしいのでしょうか?(何度もすみません・・・) -- [[Yoshitake]] &new{2020-07-04 (土) 10:05:08};
- ↑すみません、間違いです -- [[Yoshitake]] &new{2020-07-04 (土) 10:05:53};
- 「固有ケットになっている場合に」と書いたのは、$\langle x|\hat{p} = -i\hbar \frac{\partial}{\partial x}\langle x|$の両辺に$|\psi\rangle$をかけて、$\langle x|\hat{p}|\psi\rangle = -i\hbar \frac{\partial}{\partial x}\psi(x)|$となり、左辺は$|\psi\rangle$が$\hat{p}$の固有関数になっている場合に限り$\langle x|\hat{p}|\psi\rangle=\langle x|p\psi\rangle = p\psi(x)$になってp82の式に一致する(p82では$\psi(x)$は$\mr{e}^{2\pi i \left(x/\lambda - \nu t\right)}$で$p=h/\lambda$です)、と思ったからです。 -- [[Yoshitake]] &new{2020-07-04 (土) 10:19:41};
- $\frac{\partial}{\partial x}$の共役についてはおかげさまで理解できました。ありがとうございます。 -- [[Yoshitake]] &new{2020-07-04 (土) 10:29:40};
- $\left<x\right|\hat p=-i\hbar{\partial\over \partial x}\left<x\right|$という式は、後ろに何も来なくても(あるいは$\left|x'\right>$が来ようが$\left|p\right>$が来ようが$\left|\psi\right>$が来ようが)関係なく成り立つ式です。固有関数に限る必要はありません。 -- [[前野]] &new{2020-07-04 (土) 18:15:13};
- はい、理解できました。ありがとうございました。 -- [[Yoshitake]] &new{2020-07-04 (土) 23:55:44};
- はい、理解できました。ありがとうございました。 -- [[Yoshitake]] &new{2020-07-24 (金) 11:56:22};

#comment

**運動量表示 [#m08d1472]
>[[Yoshitake]] (2020-07-03 (金) 10:00:16)~
~
p159 p-表示の【補足】のところで~
演算子$\hat{p}$をx-表示すると~
$\hat{p}|x\rangle = i\hbar \frac{\partial}{\partial x}|x\rangle$~
あるいは~
$\langle x|\hat{p} = -i\hbar \frac{\partial}{\partial x}|x\rangle$~
と書けるということですが、そうすると、教科書などによく書いてある、~
「運動量演算子の座標表示は$\hat{p} = -i\hbar \frac{\partial}{\partial x}$である」といった文言は、厳密には意味がはっきりしていなくて(期待値などの計算をするうえでは単に$\hat{p}\rightarrow -i\hbar \frac{\partial}{\partial x}$に置き換えればよい、くらいの意味しかなくて)、より正確には「運動量演算子の座標表示は、$|x\rangle$に左から作用するとき$\hat{p}=i\hbar \frac{\partial}{\partial x}$であり、$\langle x|$に右から作用するとき$\hat{p} = -i\hbar \frac{\partial}{\partial x}|x\rangle$である」とするのが正しい、という理解でよいでしょうか?~
同じことをくどくど繰り返してしまっているようですが、これまで特に考えもせず$\hat{p}\rightarrow -i\hbar \frac{\partial}{\partial x}$に置き換えていたために、運動量表示のところで頭が混乱してしまい、質問させていただきました。~

//
- 本に書いてあるとおりで、$\hat p$が$\left<x\right|$に掛かるなら$-\mathrm i\hbar{\partial \over\partial x}$、$\left|x\right>$に掛かるなら$\mathrm i\hbar{\partial \over\partial x}$です。多くの本で$-\mathrm i\hbar{\partial\over\partial x}$だけが書いてあるのは、掛かる相手が$\left<x\big|\psi\right>=\psi(x)$だからです。 -- [[前野]] &new{2020-07-03 (金) 18:28:38};
- 掛かる相手がいつでも$\psi(x)$で、「掛かる」というのが$\left<x\big|\hat p\big|\psi\right>$という結果なのなら、安心して$\hat p\to -\mathrm i\hbar{\partial\over\partial x}$と置き換えて構いません。 -- [[前野]] &new{2020-07-03 (金) 18:30:40};


#comment

**無題 [#z82066c0]
>[[Yoshitake]] (2020-07-02 (木) 09:02:55)~
~
P229-230 エルミート多項式の計算のところで~
p229で導いた漸化式~
$a_{n-2} = -\frac{n(n-1)}{4}a_n$~
を使って$H_4$を計算しようとすると、~
まず$a_4 = 2^4=16$とすると、$a_2 = -\frac{4(4-1)}{4}16 = -48$となり、次に$a_0 = -\frac{2(2-1)}{4}(-48) = 24$~
となってしまいます。本文中では$a_0=12$となっていて、他の文献を見ても$a_0=12$となっているのですが、どこがおかしいのでしょうか?~

//
- ああ、これは確かに我ながら説明が悪いですね。(11.20)で$n-2$次までを書いてますが、たとえば$n-4$次を書くと$(n-2)(n-3)a_{n-2}\xi^{n-4}-2(n-4)a_{n-4}\xi^{n-4}+2\lambda a_{n-4}\xi^{n-4}=0$となります。 -- [[前野]] &new{2020-07-03 (金) 00:28:42};
- 最後の$\lambda$は$n$になるので、$(n-2)(n-3)a_{n-2}\xi^{n-4}-2(n-4)a_{n-4}\xi^{n-4}+2n a_{n-4}\xi^{n-4}=0$です。 -- [[前野]] &new{2020-07-03 (金) 00:30:26};
- つまり、最後の$n$だけは次数を下げていくときに一緒に下がっていかないわけです。 -- [[前野]] &new{2020-07-03 (金) 00:32:32};
- もともと$\lambda$だった$n$は最初の微分方程式についていた「定数」ですが、それ以外の$n$は$\xi$の次数から来てます(出自が違うわけです)。 -- [[前野]] &new{2020-07-03 (金) 00:34:05};
- なるほど、計算が合いました。ご丁寧にありがとうございます。 -- [[Yoshitake]] &new{2020-07-03 (金) 09:34:27};

#comment

**無題 [#fe515487]
>[[Yamamoto]] (2020-06-28 (日) 11:18:43)~
~
付録F 21w~
F.35とF.36式の間~
の積分式にdxが抜けている様です~

//
- 抜けてます、すみません。訂正しておきます。 -- [[前野]] &new{2020-06-28 (日) 16:51:03};

#comment

**間違い箇所? [#q35cfd7b]
>[[Yamamoto]] (2020-06-26 (金) 22:23:05)~
~
よくわかる量子力学第8刷~
P353 D.35式~
eの肩~
i → -i~
ではないでしょうか?~

//
- すいません、たしかにここは$-i$です。 -- [[前野]] &new{2020-06-28 (日) 16:48:13};
- 今サポートページ見たらこの間違い、発見されていたのに訂正漏れだったようです。次で訂正してもらいます。 -- [[前野]] &new{2020-06-28 (日) 16:50:15};

#comment

**練習問題12-12の解答について [#m08ed235]
>[[山下 実]] (2020-06-25 (木) 18:40:19)~
~
p364及びp365の符号について~
p364の最後の行$$-2/ξ**2(1/ξ-d/dξ)$$~
p365 2行目 $$2ξ(d2/dξ2+1)-2α(1/ξ-d/dξ)$$~
6行目 $$2/ξ*l(l+1)-2α(1/ξ-d/dξ)=2α*d/dξ+2(l(l+1)-α)1/ξ$$
ではないでしょうか。
   ~

//
- p364の最後の行は、手持ちのファイルでは${2\over\xi^2}\left(-{1\over\xi}+{\mathrm d\over\mathrm d\xi}\right)$となってます。ですから御指摘の式でOKです。 -- [[前野]] &new{2020-06-25 (木) 19:37:13};
- p365の2行目も、手元のファイルでは$2\xi\left({\mathrm d^2\over\mathrm d\xi^2}+1\right)+2\alpha\left(-{1\over\xi}+{\mathrm d\over\mathrm d\xi}\right)$ですので、御指摘の式と同じです。 -- [[前野]] &new{2020-06-25 (木) 19:41:58};
- 最後の式もあってます。 -- [[前野]] &new{2020-06-25 (木) 19:42:50};
- サポートページにある修正リストの方を参照してください。 -- [[前野]] &new{2020-06-25 (木) 19:43:46};

#comment

**演習問題11-2回答について [#j516251f]
>[[山下 実]] (2020-06-18 (木) 12:10:25)~
~
神戸大学経済学部卒業で、67歳になりますが、退職後趣味で物理を勉強しています。~
むつかしいですが丁寧に計算式を記載していただいているので理解しやすいです。~
「係数を比較すると」の後の数式左辺でtのn乗及びn!は不要ではないでしょうか。~

//
- すいません、たしかにこの2つは不要です。 -- [[前野]] &new{2020-06-19 (金) 03:24:17};

#comment

**式(6.23)について [#qc20e5ba]
>[[草間崇夫]] (2020-05-16 (土) 17:21:28)~
~
積分範囲が一周期と考えると∫ψm・ψn dx=Lとなり最後の行には周期Lが掛かると思うのですが。どうか宜しくお願いします。~

//
- この$\psi$は$\int\psi^*_m  \psi_n \mathrm dx=\delta_{mn}$と規格化されていると思ってください。 -- [[前野]] &new{2020-05-16 (土) 17:31:07};
- ありがとうございました。 -- [[草間崇夫]] &new{2020-05-16 (土) 20:23:42};


#comment

**間違い箇所? [#f91e1821]
>[[Yamamoto]] (2020-05-06 (水) 22:33:06)~
~
よくわかる量子力学第8刷 下記箇所に間違いがあるのではないかと思います~
P319 A.7式の第二項~
P329 A-41式の符号~

//
- p319については、$\partial_x V$は${\partial V\over\partial x}$の省略記法なのですが、ここだけ省略する意味もあまりないので、次の版から${\partial V\over\partial x}$に直したいと思います。 -- [[前野]] &new{2020-05-07 (木) 07:18:12};
- p329は、(A.41)ではなく、その2行上の$\left(-{\partial^2  H(x,p)\over \partial p^2}\delta p\delta t , \delta p+{\partial^2  H(x,p)\over \partial p\partial x}\delta p\delta t \right)$が正しくは$\left({\partial^2  H(x,p)\over \partial p^2}\delta p\delta t , \delta p-{\partial^2  H(x,p)\over \partial p\partial x}\delta p\delta t \right)$でした。 -- [[前野]] &new{2020-05-07 (木) 07:21:24};

#comment

**P334(B.3)について [#u54c626e]
> (2020-04-07 (火) 00:09:59)~
~
P334(B.3)のフーリエ変換の説明において、計算過程で登場した定積分がディラックのデルタとなっていて2Lを乗じ忘れているように思えました。既にご存知である、もしくは私の間違いでしたらすみません~

//
- すみません、クロネッカーのデルタでした --  &new{2020-04-07 (火) 00:15:50};
- ああ、ほんとだすみません。横になった}の下のは、$=2L\delta_{mn}$です。 -- [[前野]] &new{2020-04-07 (火) 16:38:36};

#comment

**P170 問い8-2について [#u98c15c8]
>[[大学生]] (2020-03-13 (金) 21:48:24)~
~
P170の練習問題(問い8-2)について質問です。~
ヒントにpψ=ikxψとありますが、これはどこからくるものなのですか?~

//
- 計算しようとしている式は$\psi_1-ik\psi_2=0$で、$\psi_1=p\psi,\psi_2=x\psi$です。今$<x>=<p>=0$であることに注意。 -- [[前野]] &new{2020-03-14 (土) 07:19:13};
- わかりました、ありがとうございます! -- [[大学生]] &new{2020-03-14 (土) 09:36:05};

#comment

**問い12-1 [#s749c95d]
> (2020-01-09 (木) 23:24:27)~
~
前野様~
お世話になっております。~
~
P.263の練習問題【問12-1】について質問です。~
問12-1において、(12.50)をひっくり返してL=-p×xを計算するとすべて消えて0になってしまい、(12.50)と一致しません。~
どうすればひっくりかえした結果を(12.50)と同じ形にできるのでしょうか~

//
- p120のFAQを読んでください。ここで考えているのは演算子なので、「さらにこの後ろに任意の関数がある」と思って計算しなくてはいけません。 -- [[前野]] &new{2020-01-10 (金) 07:24:12};
- すみません、見落としておりました。ありがとうございます! -- [[問12-1]] &new{2020-01-11 (土) 22:12:17};

#comment


---
これより古いものは以下に移動しました。

[[「よくわかる量子力学」サポート掲示板2019年12月まで]]
-[[「よくわかる量子力学」サポート掲示板2019年3月まで]]
-[[「よくわかる量子力学」サポート掲示板2018年12月まで]]
-[[「よくわかる量子力学」サポート掲示板2017年12月まで]]
-[[「よくわかる量子力学」サポート掲示板2017年7月まで]]
-[[「よくわかる量子力学」サポート掲示板2012〜2015]]
-[[「よくわかる量子力学」サポート掲示板(2011年)]]

トップ   新規 一覧 単語検索 最終更新   ヘルプ   最終更新のRSS