「よくわかる初等力学」(東京図書)サポート掲示板2 †
よくわかる初等力学サポートページに戻る
- mathjaxを使って、TeX形式で数式を打てるようにしてあります。$または$$(もちろんほんとは全角じゃなく半角の「ドル」です)で囲んで入力してください。
- spam避けに、httpを含む文章と、英字のみの文章は登録できなくしてあります。
円盤の慣性モーメントについて †
はじめ? (2016-09-18 (日) 10:13:07)
円盤の慣性モーメントはなぜ1/2MR^2となるのですか?I_xx+I_yy+I_zzでMR^2ではないのですか?
- また、(8.45)のように計算すると、円盤の場合z方向に長さ0なので積分区間が0で慣性モーメントは0にはならないのでしょうか? -- はじめ?
- 慣性モーメントの各成分を足し算しても意味がありません。 -- 前野?
- 長さが0とみなせる場合はいったん有限の長さ(c)を与えておいて、計算が終わってからc→0の極限を取るべきです。そうやればちゃんと0にならないです。あるいは最初から2次元でやるなら、体積密度じゃなく面積密度を使った計算(8.5.2節ではこれをやっている)をやります。 -- 前野?
- 見直していて気づきましたが、(8.44)は間違っていますね。$I_{xx}=I_{yy}={\rho_{\scriptscriptstyle \mathbb S}\pi R^4\over 4}={MR^2\over 4},I_{zz}={\rho_{\scriptscriptstyle \mathbb S}\pi R^4\over 2}={MR^2\over 2},I_{xy}=0$と訂正してください。 -- 前野?
角運動量と角速度の関係 †
はじめ? (2016-09-13 (火) 15:26:37)
p234の(8.13)では角運動量と角速度は平行となったのにp241以降では平行とならないのはなぜですか?
- (8.13)は質点の式で、241pのあたりからは質点でなく剛体の話をしている、というのが違いですが「なぜ」というのいうのは何が知りたいのでしょう?? -- 前野?
- たとえば質点の運動ですが235ページの右側の図のような$\dot \phi\neq0$でθが一定の運動をしている場合を考えると、角速度はz軸周りに見えますが、角運動量の方向は違います。むしろ角速度と角運動量が同じになるのは「素直な回転」をしているときだけ、とも言えます。 -- 前野?
- レスがおくれてごめんなさい。そもそもの理解ができていないので、もう少し質問をさせていただきます。角速度というのは軸のことでしょうか? -- はじめ?
- ??? 角速度というのは「軸の周りに単位時間あたりに回転する角度」ですから、軸そのものとは別です。 -- 前野?
- 軸の向きも含めて表現する時は、(8.13)にもあるように、$\dot\theta\vec{\mathbf e}_\phi - \sin\theta\dot\phi\vec{\mathbf e}_\theta$とベクトルで表現します(ベクトルの向きが軸の向き、ベクトルの長さが単位時間あたりの回転角度)。 -- 前野?
- お返事ありがとうございます! p235の下から三行目の「つまり」というのがわかりません。お教えください。 -- はじめ?
- 「つまり」がわからない、というのは「角速度ベクトルの向きが回転軸の方法である」という意味がわからないということでしょうか?たとえば$\dot\theta\neq0$で$\dot \phi=0$なら角速度ベクトルは$\vec{\mathbf e}_\phi$の方向を向きます。これが「軸の方向」だという意味ですが。 -- 前野?
- dΦ/dtが0のときはe_Φベクトルが軸となるのがわかるのですが、dΦ/dt≠0、dθ/dt≠0という状況はどうでしょうか?そんな場合はありえないのでしょうか? -- はじめ?
- もちろんありえますし、そのときはその状況に対応した軸があります。「ありえない」なんてことはありません。 -- 前野?
- お返事ありがとうございます!その時、θベクトル方向Φベクトル方向に運動している思うのですが、その軸もθベクトル、Φベクトルを使って表せるのですか? -- はじめ?
- もちろん表現できますが、運動している方向と軸は別の向きですよ。 -- 前野?
- お返事ありがとうございます!軸は運動方向とは垂直だとおもうのですが、θベクトルとΦベクトルで張られるの平面上に軸があるのは違和感はありませんか? -- はじめ?
- 平面上???いや平面上ってことはなく、いろんな方向向きますけど。$\vec{\mathbf e}_\theta,\vec{\mathbf e}_\phi$は質点のいる場所によっていろんな方向向くので、いろんな方向を向けます。 -- 前野?
- お返事ありがとうございます!運動のベクトルをはke_θベクトル+le_Φベクトルとあらわすときも、軸がae_θベクトル+be_Φベクトルとなるのですよね。(k,l,a,b,は実数) 軸のベクトルと運動のベクトルは独立ではないのでしょうか? -- はじめ?
- すいません、根本的なところでなにか誤解されているようです。「運動のベクトルをはke_θベクトル+le_Φベクトルとあらわす」というときの「運動のベクトル」って何ですか??(速度?) -- 前野?
- 「運動のベクトル」というのが速度のベクトル(あるいは「運動量のベクトル」の間違い??)のつもりなら、一般には$j\vec{\mathbf e}_r$のような項も入ります。 -- 前野?
- 角運動量を計算するときは、$\vec x\times \vec p$のように外積を取るので、角運動量のベクトルには$\vec{\mathbf e}_r$が入らなくなります。 -- 前野?
- 「運動のベクトル」というのが「速度ベクトル」もしくは「運動量のベクトル」の意味だったとしたら、「角運動量のベクトル」と「運動量のベクトル」は必ず直交するので、独立ではありません(御質問の意味がいまいち曖昧で困っているのですが、疑問はそういう意味でしょうか?) -- 前野?
- お返事ありがとうございます。質問が曖昧でごめんなさい。運動のベクトルというのは速度のことでした。軸が運動と垂直になるのは納得いたしました。軸(角速度ベクトル)の大きさが単位時間あたりの回転角度になるのがよくわかりません。 -- はじめ?
- 角速度ベクトルの大きさが回転速度の大きさというのも納得いたしました。ありがとうございます。長くなってしまいましたので、当初の疑問は再び題をつけて投稿させていただきます。 -- はじめ?
- 当初の疑問についてなのですが、各質点について角運動量と角速度ベクトルが平行ならば剛体の角運動量と角速度ベクトルは平行なのではないか、というものでしたが、原点を変えてはいけないので、各質点ごとにも成り立たないことを自覚しておりませんでした。今となっては納得しております。お忙しいところ長く付き合ってくださり、毎度のことながら至極感謝しております! -- はじめ?
- すいません、掲示板の調子が悪くて書き込みがうまくできてなくて申し訳ありません。とりあえず納得できたようでよかったです。 -- 前野?
エネルギーについて †
りょう? (2016-09-10 (土) 20:43:43)
連続で申し訳ありません。
運動量の変化=力積の式について「時間積分した」というのはなんとなくですがわかるのですが、なぜ運動方程式を空間積分したのでしょう?
そうしないとエネルギーという概念が出てこないのは分かりますし、エネルギーという概念が便利なのは問題を解いていて非常によくわかるのですが…
宜しくお願い致します。
- それはもちろん、おっしゃる通り「エネルギーという概念が便利だから」です。もうひとつ前の段階だと「仕事」という概念が便利だから、ということになります。 -- 前野?
2つの物体の衝突について †
りょう? (2016-09-10 (土) 19:49:42)
2つの物体が正面衝突して、2つとも向きを変えて運動した(例えば、Aという物体は左から右に運動していたが左に運動し、Bは右から左に運動していたが衝突後、左から右に運動した)場合、それぞれの物体の運動量は変化するはずです。(少なくとも、向きが反対になってしまうので、衝突前と衝突後の速さが同じでも向きが異なるはずですから)
その場合、「運動量の変化=力積」が適用できるのですか?
「衝突による力」は「外力」とみなしてよいのでしょうか?
長くなってしまいましたが、宜しくお願い致します。
- というか「運動量の変化=力積」が適用できない場合というのはないです。衝突による力であろうがなんだろうが、外からかかる力は「外力」と考えていいです。 -- 前野?
- お返事ありがとうございます。理解できました。 -- りょう?
作用反作用について †
はじめ? (2016-09-01 (木) 03:26:39)
作用があれば反作用があるとのことを拝読したのですが、作用反作用によって力学的波動の説明はできるのでしょうか?
考えたことを画像にしましたので添えさせていただきます。それぞれ最初のhを抜いてあります。ttp://www.fastpic.jp/images.php?file=6697958351.jpg
ttp://www.fastpic.jp/images.php?file=1654733315.jpg
ttp://www.fastpic.jp/images.php?file=5570683879.jpg