「よくわかる初等力学」(東京図書)サポート掲示板 †
よくわかる初等力学サポートページに戻る
- mathjaxを使って、TeX形式で数式を打てるようにしてあります。$または$$(もちろんほんとは全角じゃなく半角の「ドル」です)で囲んで入力してください。
- spam避けに、httpを含む文章と、英字のみの文章は登録できなくしてあります。
初等力学、解析力学、熱力学、電磁気学、量子力学以外の分野について †
SH? (2022-05-13 (金) 23:26:02)
よくわかる初等力学、解析力学、熱力学、電磁気学を購入して、分かりやすかったです。そこで、初等力学、解析力学、熱力学、電磁気学、量子力学以外の分野についての出版予定はありますか?
- 予定としては「よくわかる特殊相対論」が上がっているのですが、執筆が進んでないので出版予定は立っていません。 -- 前野?
P125 一番下の行について †
SH? (2022-05-09 (月) 11:12:16)
細かいですが、「時刻t1における曲線」は「時刻t1における接線」ではないでしょうか。
P175 保存則その1 6.1 †
TS? (2022-04-13 (水) 15:59:38)
(積分形の法則)右辺第二項∫(F/m)dtは∫[(F/m)dt]dtではないでしょうか?
- いや、これで合ってますが(dtが二つもあると次元が合わないし)。 -- 前野?
- dv=Fdt/m を時間積分すると、左辺∫dvdt、右辺 1/m∫(Fdt)dt = 1/m∫(mdv)dt =∫dvdt となり左辺=右辺となりますが、これは間違いですか? -- TS?
- 間違いです。というか、「積分する」という言葉の意味を勘違いされてるようです。積分とは「微小量を足し上げていく」事で、左辺で言えばdvという微小量を足し上げた結果は$\int dv=v-v_0$です。 -- 前野?
- 上記のご説明自体はわかるのですが、本文にある「少し書きなおしてdv = Fdt/mとして、これを時間積分・・」と言うことは右辺を積分する場合たとえば、Fdt = Aと置けば、右辺の -- TS?
- 右辺の時間積分は、1/m∫Adt = 1/m∫(Fdt)dtという式にならないのかな?という疑問です。 -- TS?
- 「Fdt/mを(何も掛けたりせずに)足し上げる」という操作を「時間積分する」と呼んでいます。そういう意味では左辺は時間積分はしてないことになります。 -- 前野?
44ページ FAQについて †
ST11? (2022-04-03 (日) 10:20:42)
上の物体には静止摩擦力が働かない事は、働けば絶対に釣り合いが保てなくなってしまうからだと、理解は出来ました。しかし、下の物体には、下向きの大きさNの垂直抗力が働いていますが、そこからはなぜ静止摩擦力が生じないかが理解出来ません。生じれば、結局は作用反作用の法則で上の物体に左右方向の力が働き、釣り合いが保てなくなってしまう事は分かります。ですが、下の物体に着目すると、理解が出来なくなってしまいます。NとN′には明確な違いがあるのでしょうか?31ページからの1.6.3のように垂直抗力をモデル化すれば理解出来るのでしょうか?
- う〜ん。上の物体に横向きの力が生じることはないことがわかっているなら、作用反作用の法則から下の物体にも上の物体からの横向きの力はない、という納得ができているなら、それがすべてだと思います(これに逆らうということは、作用反作用の法則を認めないということなので)。この違いはNとN'の違いというよりは「fがあるかないか」の違いです。 -- 前野?
- モデル化して考えるとすると、物体が長方形から微小に変形している、みたいなことを考えることになるんでしょうけど、どういうモデル化をしようが、「上の物体と下の物体の間に横向きの力が働かない」というのは一緒です。 -- 前野?
- そうですよね。作用反作用の法則から考えれば、上の物体から下の物体に働くの横向きの力はあり得ませんでした。作用反作用の法則は別々の物体で働く力の話なので、下の物体にだけ着目する事はしてはならないですよね。 -- ST110?
P47 力は自由ベクトル?束縛ベクトル?スライディングベクトル? †
YY? (2022-03-16 (水) 22:57:05)
こちらの本にあったか忘れましたが、よく2質点系の2つの運動方程式を足して重心の運動方程式を導出する際、右辺は2つの質点にはたらく外力のベクトルの和になってますよね。この場合は、外力のベクトル起点を2質点間を自由に動かしてしまってると思うのですが、許されるのでしょうか?2つのベクトルの合ベクトルの作用線上に必ずしも重心が乗るとは限らないですよね。
- 力の作用点を動かすことで影響を受けるのは「力のモーメント」と「角運動量」に関する式で「力」および「重心の並進運動量」に対する式は影響を受けません。ですから問題ありません。作用線重心を通らないことの影響は、「重心周りの角運動量」に影響を与えますから、そちらを計算したいときには作用点を作用線方向以外に動かしてはいけませんが。 -- 前野?
- つまり右辺がr×Fのような作用点を作用線方向以外にうごかくすと変わってくるような物理量でないからOKということですね。ようやく「質点系の重心は、あたかも質点系の全質量に、あたかも質点系にはたらく力の合力が作用したかのようにふるまう」の意味が分かりました。ありがとうございます。しかしとすると、重心の運動方程式ともとの2質点の運動方程式は意味が違いますよね。重心の運動方程式は実際にそこに何かあるわけでもないし、何か作用しているわけでもなく、重心という位置ベクトルの動きを説明するための運動方程式(フィクション)ってことですね。 -- YY?
- さらに言えば、重心にはたらく力には反作用はありませんよね。慣性力と似てますね。 -- YY?
- 「重心にはたらく力には反作用はない」なんてことはありません。重心に働く力は「なにかの出した力」の和で、それぞれの力の反作用はその「なにか」に掛かってますから。 -- 前野?
- 重心の運動方程式がフィクションだというのも同意できません。「各質点の運動方程式」の和として、ちゃんと意味のある方程式です。すくなくとも「フィクション」などという「現実味がない」を意味する言葉で語るもんではないでしょう。 -- 前野?
- ありがとうございます。フィクションは言い過ぎですね。先生のおっしゃる「それぞれの反作用」はもともとの各質点が受ける力の反作用ですよね。わかりやすく2質点系で考えれば、重心の位置には質量のある何物もありませんから、力が働きようがありませんよね。とすれば、重心の運動方程式の言わんとするところは、重心の位置ベクトルは、そこに2質点の質量の和と同じ質量をもつ物体があったとして、そこにあたかも2質点が受ける力の合力と同じ力がはたらくときに、物体が描く運動と一致するということでいいのではないでしょうか? -- YY?
- もちろん、重心の運動は(重心のその位置に実際に物体がいるかどうかには関係なく)重心の運動方程式で記述できますから、なんの問題もありません。「そこにあたかも2質点が受ける力の合力と同じ力がはたらくとき」のように設定をする必要もなく、重心は重心の運動方程式で、相対的な運動は相対的な運動の運動方程式で記述されているということでよいと思います。 -- 前野?
- たとえば中空のゴムボールの重心には少なくとも「ゴム」はありません(空気がある)が、それでも「ゴムボールの運動方程式」は重心の運動方程式としてちゃんと成り立つわけです。 -- 前野?
- 実際にはこの世界にある「目に見える物体」は全部構造があるわけで、その構造のある物体でも「重心の運動方程式」で重心の運動が決まるってのは運動の3法則からわかる、大事なことだというわけです。 -- 前野?
- 先生ありがとうございます。本当にすごいことですね。ところでもう一つ回転運動のほうなのですが、特に拘束がない場合、回転の中心が重心になることに関しても、同じような「重心を中心とした回転運動方程式」が自然と導かれるみたいなのがあるのでしょうか?まだ角運動量の章まで読み進められてないのですが、少しだけ先回りして、教えていただけませんでしょうか? -- YY?
- 重心からみた相対運動(回転とは限らず振動の場合もあり)については10.4あたりで扱ってます。 -- 前野?
p215の変形の図について †
大学生? (2022-02-20 (日) 03:52:17)
$\Delta x$を作用点の移動距離とすると,$\Delta x'$と$\Delta x$は同じになるような気がします.
私はここの説明は,「手が物体にした仕事と,物体が手からされた仕事は同じ$F\Delta x$だが,運動方程式から$\Delta \(\frac{1}{2}mv_G^2\)=F \Delta x_G$であるので,重心運動エネルギー変化に寄与するのは$F \Delta x_G$であって,変形によって重心位置は左に寄るため$\Delta x_G <\Delta x$であるから,この差分の仕事が内部エネルギー(熱やポテンシャルなど)に変化する」というのが正しい気がするのですがどうでしょうか.
p128注釈19の誤植第9刷 †
のらねこ? (2022-02-17 (木) 02:18:56)
ラグランジュの記法がニュートンの記法として紹介されています。
既出かもしれませんが念のため、、
- これ、物理では$\dot y$とか$y'$という書き方をひっくるめて「ニュートンの記法」と呼ぶことが多いのでこうしているのです。「ラグランジュの」という呼び方はあまりしない(ラグランジュさんごめん)。というわけで、$y'$を$\dot y$にしておくことにします。 -- 前野?
ᴘ170 糸の張力をmrω²より少しだけ大きくしてみる→md²r/dt²が負になる †
YN? (2022-02-10 (木) 18:05:23)
張力を大きくすると、mr(dθ/dt)²ーmd²r/dt²の「md²r/dt²」が負になる(rが小さくなる)の説明をもう少しお願いします。
- えっと、どの段階がわからないのでしょう? 張力Tが大きくなるということは(5.17)の$\vec {\mathbf e}_r$の係数が(Tにはマイナス符号がついているので)小さくなる、というのは大丈夫でしょうか。 -- 前野?
- ということは、$m{d^2\over dt^2}-mr\left({d\theta\over dt}\right)^2$が小さくなります。第1項と第2項が変化する可能性がありますが、張力という力が半径方向に働くことを考えると、運動の変化もr方向に起こるはずと考えれば(このあたりの説明が足りなかったのかな?)第1項が小さくなるだろうと考えれられます。 -- 前野?
- ${d^2r\over dt^2}$は(5.18)の段階で0なので、その状態から小さくなる方向に変化したということは「負になった」ということで、ということはもともと変化してなかったrが減少し始めるということになります。 -- 前野?
- ありがとうございます。ヒモにおもりをつけて振り回している手の力を緩めると、ヒモがスルスルとr方向に伸びていくのは、これと逆な理屈でしょうか? -- YN?
- それはもちろんそうですね。 -- 前野?
- それはもちろんそうですね。 -- 前野?
- そうすると、今度は張力を一定のまま、回転速度dθ/dtをあげると、d²r/ -- YN?
- 張力一定のままdθ/dtを大きくすると、d²r/dt²も大きくなる、、 -- YN?
- dθ/dtを小さくすると、d²r/dt²も小さくなるってことですね。 -- YN?
- dθ/dtを小さくすると、d²r/dt²も小さくなるってことですね。 -- YN?
- どういう状況でその変化を起こすかにもよるので、必ずそうなるとも限らないですね。張力Tの方が変化する可能性も大いにあるので。 -- 前野?
よくわかる初等力学 †
堀田良憲? (2022-01-22 (土) 17:29:14)
・あまりにも訂正が多すぎて、書籍の中に書き込む作業が新たに発生し
大変です。第1番ずりを購入しましたが、訂正本を頂きたいです。
・また、よくわかるシリーズの熱力学や電磁気学も同様に誤記だらけでしょうか。購入しようと思っていますがいかがでしようか。それによっては検討しなおししようと思います。あまりにもひどすぎる。
- ミスが多くてすみません。訂正本が欲しいというのでしたら出版社の方に要求してください(要求が通るかどうかは、著者である私にはわかりかねます)。よくわかる初等力学にせよ他の本にせよ、間違いが発見されたときは修正してますので、新しい版になるほど減っていて、「誤記だらけ」ということはありません。「よくわかる初等力学」も第1刷からするとかなりミス部分はつぶせているはずです。 -- 前野?
P171 振り子の運動 †
TK? (2022-01-08 (土) 10:33:29)
スミマセン、式 (5.24) 左辺をどのように計算すると右辺になるのでしょうか? 右辺から左辺の計算は理解できます。よろしくお願いします。
- すいません、うっかり見落としていて返事遅れました。右辺から左辺がわかるのでしたら、左辺から右辺は逆をやるだけのことです(積分というのはそもそも「微分したらこれになるものは何かなぁ?」と探して見つけるものです)。とっかかりとしては、${d\theta\over dt}=\omega$とおけば${d\omega\over dt}\omega$になって見つけやすいかもしれません。 -- 前野?
- ご説明ありがとうございます。dω -- TK?
- 計算はdω/dt∫ωd -- TK?
- 計算はdω -- TK?
- すみません、途中で送信されてしまいました。 計算はdω/dt∫ωdωdt/dω =∫ωdωでよろしいでしょうか? =1/2ω^2 -- TK?
- 計算式がちょっと変ですが、$\int \omega{d\omega\over dt}dt = \int \omega d\omega$ということなら、それでいいと思います。 -- 前野?
- 積分変数をdt=dωdt/dωのように置換して計算したのですが、これは間違いでしょうか?意味のない置換のように思いますが。 -- TK?
- 置換するのは間違いじゃないですが、上で「dω/dt∫ωdωdt/dω =∫ωdωでよろしいでしょうか?」と書いている、最初のdω/dtが積分の外に出ているのはおかしいです。 -- 前野?
- (dω/dt)ωの積分方法が解らなかったので、苦し紛れにdω/dtはどうせ何かの値だと考え積分の外へ出したら、置換した積分変数の一部と消去できたので、これでいいのかな?と思いました。数学的?におかしいでしょうか? -- TK?
- そんな苦し紛れはだめでしょう。積分の中にある量は積分をしている間に変化していくものなのですから、積分の外に出してしまったら違うものを計算していることになります。積分の中から勝手に外に出してしまうのは、「1年間の総利益を求めよ」と言われて1月1日の利益を365倍してOKとするようなものです。 -- 前野?
- よくわかりました。お手数かけました。丁寧な御説明ありがとうございました。 -- TK?
- しつこくてすみません。積分の外へ出さず、積分内で置換した積分変数の一部と消去するのはOKですね。 -- TK?
- 積分の内側でやるなら間違ってません -- 前野?
- ありがとうございました。 -- TK?