「よくわかる熱力学」(東京図書)サポート掲示板 †
よくわかる熱力学サポートページに戻る
- mathjaxを使って、TeX形式で数式を打てるようにしてあります。$または$$(もちろんほんとは全角じゃなく半角の「ドル」です)で囲んで入力してください。
- spam避けに、httpを含む文章と、英字のみの文章は登録できなくしてあります。
熱力学第一法則の微分系について †
梅園? (2021-01-23 (土) 14:20:23)
p144の熱力学第一法則で、dUは始状態と終状態だけが分かれば経路に依存しないとのことでした。その理由としては、P135の「Uの定義」のためだと考えました。ただ、そこでは、「任意の断熱操作において」という記載もありました。
式7.12(熱力学第一法則の微分系)は、どのような操作においても成立するので、断熱操作でない場合においても、「dUは始状態と終状態だけが分かれば経路に依存しない」と考えて良いのでしょうか。
- 断熱操作でない場合でも、dUは始状態と終状態だけで決まります。その理由は、ここまでの話の中で、Uが「状態量」つまり状態を一つ指定すれば決まる量であることがわかっているから、ということになります。 -- 前野?
- Uは断熱操作で定義するので、定義するときは断熱操作に限ってますが、いったん定義されたら任意の操作で(始状態と終状態が同じなら)のdUは同じになります。 -- 前野?
- 分かりました。ありがとうございます。 -- 梅園?
p78の上段の「逆」に関する記述について †
梅園? (2020-12-30 (水) 16:59:14)
4行目からの
「ピストンを引く/押す」といういっけん「逆」に見える現象は、細かく見ると「逆」になっていない。
との記述については、膨張時でも圧縮時でも、どちらの場合においても、準静的でない操作の方が、準静的な操作の場合よりも気体のする仕事が小さくなる(逆にならない)という意味だと理解していました。
また、p72の物体を動かす時に動摩擦力が働く事象においては、行きと帰りとで動摩擦力の向き自体が変わるので、床が物体にする仕事はどちらも符号が同じで逆にならないという意味でしょうか。
でも、その場合だと、同様と言って良いものかどうかが分からなくなってきました。「ピストンを引く/押す」操作の場合には、膨張時と圧縮時において、気体のする仕事の符号が逆になる(膨張時はプラスで圧縮時はマイナス)からです。
上記の理解はどこか間違っていますでしょうか。
- 摩擦力と気体の力を合わせた合力を「ピストンが受ける外力」として考えると、「動摩擦力が働くこと」も「準静的な操作でないこと」もどちらも「ピストンに働く合力がする仕事を小さくする」(これらのどちらも、それがなければピストンにされる仕事が増える)ということになります。どちらも外力の仕事が減じられるという意味で同様です。 -- 前野?
- 分かりました。ありがとうございました。 -- 梅園?
- 分かりました。ありがとうございました。 -- 梅園?
p182のクラウジウスの不等式と最大級熱について †
田島? (2020-10-14 (水) 22:20:29)
A(S,V)①→B(S+dS,V+dV)②→A(S,V)というサイクルにおいて、解説にあるとおり、dQ,dSの正負は特に指定がないとのことですが、①ではdQという熱をもらい、dWという仕事をし、②ではTdSという熱を放出し、-PdVという仕事をしたとして立式していますが、
(1)dQ<0ならば、「熱を放出した」ということになると思いますが、このように①②の立式において、正の方向(dQならば吸熱ベースで立式)しているのはなぜでしょうか?熱力学に慣れていないためかこのあたりがピンときません。また、②においてPdVではなくーPdVとなっているのもピンときません。
(2)「最大級熱」に関してはp138等温過程において、準静的過程を経るとき、最大吸熱が発生するということをやりましたが、p182は等温過程に限定しているわけではないですよね?
- そんなのは、$\mathrm dQ$という記号をどう定義するかだけの問題なので、「放熱を$\mathrm dR$」としたっていいわけです(文字を$R$にしたのは$Q$とは別にしたかっただけです)。放熱で考えても吸熱で考えても、物理は変わりません。 -- 前野?
- 仕事が$-P\mathrm dV$になっているというのは、図の中でしょうか。図ではBからA、つまり体積が$V+\mathrm dV$から$V$に変化しているときの仕事を書いているので、($V$から$V+\mathrm dV$に変わるときとは符号が逆になって)$-P\mathrm dV$となります。同様に$T\mathrm dS$は吸熱でなくB→Aの過程での放熱になります。 -- 前野?
- ここでは等温操作に限ってませんが、$T\mathrm dS\ge\mathrm dQ$は示せたので、$T\mathrm dS$は「最大吸熱」です。 -- 前野?
- 簡単には出せないので、$\mathrm dQ$などの$\mathrm d$にはバー(横線)を引いてません。 -- 前野?
- ありがとうございます。心配が晴れました。 -- 田島?
p51のオイラーの関係式について †
(2020-10-13 (火) 17:57:16)
「xの次数+yの次数=1」という関係式の1というのは問3-4にあるように、示量変数の総次数ということでしょうか?(√xyならば1/2乗ずつで,合わせて1次です)
p38のコンデンサーの例でのルジャンドル変換 †
田島? (2020-10-13 (火) 00:56:34)
U(V,l)=U(Q,l)-(∂U/∂Q)Qは(2.35)のU全とはQ全Vの差があり、これは定数項とありますが、どちらもVを独立変数としているので、変数ではないでしょうか?この文はどういう意味なのでしょうか?
- ここでは「一つの電池を繋いでいる」という状況を動かさずにコンデンサの曲板間距離を変えて要る、という文脈で見て下さい。Vはその文脈では一定です。 -- 前野?
- ありがとうございます。 -- 田島?
p25の補足に関して †
田島? (2020-10-12 (月) 00:06:18)
xが座標でないことの説明として、mの位置はxだけでは指定できないというのがよくわかりません。mは天井からの距離xを指定すれば位置が指定されるのではないのですか?
- 指定はできますよ、もちろん。この補足で言っているのは「【単純に】xでは表現できない」ということです。xは「2倍して$\ell-a$を引く」という操作をして初めて位置が表現できるので【単純に】は位置を表現する座標じゃない、ということです。 -- 前野?
- ああ、ご質問はMはともかくmだけなら座標と呼んでもいいのでは、ということですね。それはそうかもしれません。 -- 前野?
- ありがとうございます。(m,M)=(x,l-a-2x)というのは「座標」ではなく、「一般化座標」ということですね? -- 田島?
- xという変数は、Mに関しては位置を直接示してないので座標ではない、ということです。、ということです。mの位置だけの話をしているのなら「座標」と呼んでもいいでしょう(という意味では本の記述はちょっと言い過ぎてました)。xはそういう意味で一般化座標です。 -- 前野?
- ありがとうございます。 -- 田島?
p247の5行目の計算 †
田島? (2020-10-11 (日) 11:07:58)
p247の5行目で、F0[T;V,(1-x)N]+F1[T;V,xN]を計算しておりますが、それは11.42と11.43のという関数のxに関係する部分(ここではx前と固定されていますが)を調べているのですか?そうすると、(1-x)F0[T;V,N]の項はF0[T;(1-x)V,(1-x)N]となるのでF0[T;V,(1-x)N]とは一致しないと思うのですが、勘違いでしょうか。
- すいません、これは(11.42)と(11.43)の方が間違ってます。体積Vの中に(1-x)NおよびxNの物質がいる、という状況なので、前も後も$F[T;V,N]=F[T;V,(1-x)N]+F[T;V,xN]$とならなくてはいけません。 -- 前野?
- ありがとうございます。 -- 田島?
表紙裏 熱力学攻略チャート †
kiyora? (2020-10-10 (土) 13:14:51)
熱力学攻略チャートについてです。(わかりやすくて大変助かっております)
結果4から結果3に向かって矢印が伸びています。
本文によると、この矢印の向きは逆だと思ったのですが、合っていますでしょうか。
- すいません、たしkにこの矢印は逆です。 -- 前野?
系への操作の分類について †
kiyora? (2020-10-10 (土) 01:20:38)
平衡状態の遷移をもたらす系へのすべての操作として、
断熱操作と等温操作
の2つが挙げられていますが、
この2つの操作だけで、平衡状態の遷移をもたらす現実の操作はすべて記述できるのでしょうか。
お忙しいところ突然の質問で恐縮ですが、どうぞ宜しくお願い申し上げます。
- 現実の操作としては等温・断熱以外にもたくさんあります(熱の出入りがありつつ等温じゃない変化はどちらでもないですから)。「ある状態Aからある状態Bへの操作は断熱操作と等温操作だけで実現できるか?」という質問なら、YESです。後者が言えるので、すべての状態の間の関係を等温操作と断熱操作だけを手がかりに考えることができあます。 -- 前野?
- ありがとうございます。 -- [[kiyora ]]
p241の中間dF(途中)の計算 †
田島? (2020-10-08 (木) 00:12:35)
dλ(~)という部分の()の項で消えているはずの項①(∂FAB/∂NA2)×(dNA2/dλ)+②(∂FAB/∂NB2)×(dNB2/dλ)について、「化学ポテンシャルが等しい」という条件、∂FAB/∂NA2=∂FA/∂NA1と∂FAB/∂NB2=∂FB/∂NB3により消えるそうですが、①②が絶対値が等しく、符号反対となるのが考え落としがあるのかピンときません。教えてください。
- 消えている項は${\partial F_{\rm A}\over\partial N_{\rm A1}}{\mathrm dN_{\rm A1}\over\mathrm d\lambda}+{\partial F_{\rm AB}\over\partial N_{\rm A2}}{\mathrm dN_{\rm A2}\over\mathrm d\lambda}$と${\partial F_{\rm AB}\over\partial N_{\rm B2}}{\mathrm dN_{\rm B2}\over\mathrm d\lambda}+{\partial F_{\rm B}\over\partial N_{\rm B3}}{\mathrm d N_{\rm B3}\over\mathrm d\lambda}$です。 -- 前野?
- ${\partial F_{\rm AB}\over\partial N_{\rm A2}}{\mathrm dN_{\rm A2}\over\mathrm d\lambda}+{\partial F_{\rm AB}\over\partial N_{\rm B2}}{\mathrm dN_{\rm B2}\over\mathrm d\lambda}$は、もちろん消えません。 -- 前野?
- ありがとうございます。依存性を正確に捉えておりませんでした。 -- 田島?
λの示強性に関して †
田島? (2020-10-07 (水) 21:41:42)
p239の一番下の式F(途中)を見ると、λ(無次元量)は示強性の変数となっていますが、これはどうしてでしょうか。ピンときません。
- ある量が示強変数か示量変数かは、「系のコピーを複数持ってきたとしても変わらないか、そのコピーの数だけ増えるか」で決まります。λは「元の体積と混合が終わった体積の比」ですから、コピーを持ってきても増えません(コピーをN個持ってくると、「元の体積」も「混合が終わった体積」も同時にN倍になる)。 -- 前野?
- ご説明ありがとうございます。定義がまだ十分に定着しておりませんでした。 -- 田島?
P.242の(11.39)について †
FumaRu? (2020-10-06 (火) 08:25:00)
題名の通り(11.39)式についてです。この$P_{AB}$の式で$F{AB}$がVで偏微分されていますが、正しくは$V{AB}$ではないでしょうか?私の理解不足や勘違いでしたら申し訳ありません。
- FABは$F_{AB}$、VABは$V_{AB}$のことです。入力ミスをしてしまいました。お手数おかけしてすみません。 -- FumaRu?
- ありがとうございます。確かに、ここの微分は$V_{\rm AB}$による微分です。 -- 前野?
- ありがとうございます。安心しました。 -- FumaRu?
p192のエントロピーが最大になる条件に関して †
田島? (2020-09-30 (水) 15:36:10)
(9.50)の等号が成り立つとき、エントロピーが最大になる。と下から4行目にありますが、これはどのように考えているのでしょうか。
- エントロピーは大抵増えるので大抵は$\mathrm dS_1+\mathrm dS_2>0$だが、最大になる点があるならそこでは微分が0になっているはずなので$\mathrm dS_1+\mathrm dS_2=0$になる、というのが「エントロピー最大」の点の条件です。(9.50)は$\mathrm dS_1+\mathrm dS_2$に$T_1$を掛けてから$T_1\mathrm dS_1=-T_2\mathrm dS_2$を使ったものですから、等号が成り立つのはエントロピー最大の点です。 -- 前野?
- ありがとうございます。 -- 田島?
p191の図に関して †
田島? (2020-09-30 (水) 12:03:18)
p191の9.4.2の図に関してですが、説明と照らし合わせると、(また、ほかのページの図と比べると)最初の状態は複合系を外部と区切っている壁は断熱壁、複合系内部の壁は透熱壁ではないでしょうか?それ以下の図も透熱と断熱が入れ替わっているように思います。勘違いでしたらすみません。
- ありがとうございます。銀色が断熱壁、灰色が等温壁で、それが正しいです。原稿では合ってたんですが、印刷段階のどこかで入れ替わったようです。次の版で訂正します。 -- 前野?
- 私の勘違いでなくてよかったです。ご確認いただいてありがとうございました。 -- 田島?
p8w C.28 の係数 †
shino? (2020-09-28 (月) 13:13:42)
C.28 の第 2 項(M のポテンシャル側)に平方根(1/2乗)の微分から落ちてくる 1/2 が抜けてるかも? と思いました。
- すいません、たしかに抜けてますね。分子の4が2になります。 -- 前野?
- 確認ありがとうございました。 -- shino?
p112に関して †
田島? (2020-09-22 (火) 22:44:43)
p112の最後の段落「ここで操作(1)(2)は準静的に元に戻せるから~」とありますが、操作(1)(2)が準静的操作といえるのはなぜでしょうか?
- (1)の「仕切りを入れる操作」が準静的であることは69ページあたりに書いてあります。(2)に関してはそういう設定で考えるということです。 -- 前野?
- ありがとうございます。 -- 田島?
P.167の図について †
FumaRu? (2020-09-18 (金) 08:00:23)
題名の通り、P.167の図についてですが、おそらく本来はCausiusの原理、逆Carnotサイクルと書いてあるところが、「Cl ausi の原理」や「逆r nKl evサイクル」と言ったようにアルファベットの綴りが少し変になっていました。誤植かなと思い、掲示板に書き込ませていただきました。
- ご指摘ありがとうございます。確かにその通りで、原稿段階ではちゃんと「Clausiusの原理」「逆Carnotサイクル」だったのですが、書籍にする段階で何かエラーが発生したようです。次の版で修正します。 -- 前野?
P.22 †
FumaRu? (2020-09-12 (土) 21:26:51)
つりあいの位置や条件をポテンシャルの微分が0であることから求める際に、「力がつりあっている」のは物体が静止するための必要条件にすぎないので、つり合いの条件というのは静止または等速直線運動するための条件となると思うのですがこれは正しいでしょうか。
- すみません。23ページでした。 -- FumaRu?
- つりあっているのは「静止または等速直線運動」の条件なのは正しいです。ここでは等速直線運動は考えてないだけです。 -- 前野?
- ただ考えてないというだけなのですね。理解出来ました。ありがとうございます。 -- FumaRu?