「ヴィジュアルガイド物理数学〜1変数の微積分と常微分方程式」(東京図書)サポート掲示板

ヴィジュアルガイド物理数学サポートページに戻る

  • mathjaxを使って、TeX形式で数式を打てるようにしてあります。$または$$(もちろんほんとは全角じゃなく半角の「ドル」です)で囲んで入力してください。
  • spam避けに、httpを含む文章と、英字のみの文章は登録できなくしてあります。



P.18

鮒27? (2017-02-18 (土) 11:14:01)

$x=$arctan$y$の値域が

  • \frac{\pi}{2}<{y}<\frac{\pi}{2}$
    となっていますが
  • \frac{\pi}{2}<{x}<\frac{\pi}{2}$
    ではないでしょうか。

    あとarccosの定義域、値域の説明箇所で
    $y=$arccos$x$の形になっているのが気になりました。
    (P.18右上の図でも$x=$arccos$y$ですし
    arcsin,arctanは$x=$の形で説明されています。)
  • すみません、$\displaystyleが抜けて変な表示になってしまいました。 -- 鮒27? 2017-02-18 (土) 11:18:31
  • 図と説明があってないように思いましたが、問題ないようでしたらこの投稿を削除していただければと思います。(Texを間違えて掲示板を汚してしまいました。) -- 鮒27? 2017-03-03 (金) 21:23:54

本書を読み終わっての感想です。

鮒27? (2017-02-11 (土) 16:07:59)

====この本を読んだきっかけ====
もともと「よくわかる電磁気学」を発売直後に本屋で見つけ
よさそうと思い購入したのですが
何度挑戦しても、途中でギブアップしていました。
物理的な内容も難しかったのですが、
数学の理解が足りないこともあり
途中から自分でも何をやっているのかが分からない状況になっていました。
数学の理解を深めるために、この本を始めました。

====内容について====
図解が豊富で、数式のイメージがわきやすく
このサポート掲示板で疑問に答えていただいたこともあり
(以外にも)楽しく最後まで読み通すことができました。
数学の本を演習問題も含めて最後まで読み通せたのは
大学受験の時以来でとても達成感がありました。

ただすべてを理解して使いこなせるまでにはまだまだ至っていないですが・・
特に微分方程式の章で力学の話がからんでくると難しく感じたので
「よくわかる初等力学」の勉強を始めました。
(幸いにも最新の第4刷を購入できました。)

数学的に厳格な証明を行っていない部分もあるとのことですが
今の私にはちょうど良い説明の仕方でした。
あまり厳格だと、途中で読むのを止めていたと思います。

====本について====
他のよくわかるシリーズに比べてB5サイズと大きくなっていて
最初は違和感がありましたが慣れるとこちらのほうがゆったり感じて良いです。
(個人的には物理シリーズもこのサイズのほうがいいと感じました。)

私は軽い色弱で、店頭で手に取ったとき少し買うのをためらいましたが
特に読むのに苦労することはありませんでした。
逆にP.101の最初の図でF(b+db)=の囲みの点線を色分けしているところなど
"細かいところまで気を配っているな~"と感心しました。

唯一苦労したのはP.128あたりの
命令を表す○と平行線が引かれた図でしょうか。
小学生の時に受けた色覚検査の図のようで、
最初何が書いてあるのかわかりませんでした(^^;
落ち着いて眺めれば分かりました。

第2巻以降も予定されているとのことで、期待して待っています!

====要望====
電磁気学と量子力学の店頭用ポップを希望します。
物理数学と初等力学は印刷して、目に見えるところに貼っておき
やる気を出すのに役立っています。

長文失礼いたしました。

  • 感想ありがとうございます。お役に立てていただけて嬉しいです。128ページの図が見にくくてすみません(ちょっと図版を大きくすべきだったかと思ってます)。続刊はただいま作業中ですので、またよろしくお願いします。 -- 前野? 2017-02-12 (日) 08:10:59

P.103

鮒27? (2017-02-02 (木) 22:07:44)

(7.27)の下の行について。
"F(x)には上の述べた積分定数の分だけ"
という文ですが、以下のほうが適切ではないかと思いましたのでお知らせします。

上の述べた->上で述べた
積分定数->定数 (次のP.104で積分定数の説明をしているので。)

  • 確かにこの時点ではまだ積分定数という言葉は出してませんね。次版より修正します。 -- 前野? 2017-02-03 (金) 06:59:15

P.186について

鮒27? (2017-02-02 (木) 21:17:29)

(B.59)の2行上の式ですが
積分区間は
$\int_{x}^{x_0}$
ではなく
$\int_{x_0}^{x}$
ではないでしょうか?

  • 確かに、間違ってます、すみません。 -- 前野? 2017-02-03 (金) 07:00:16

P.215 【演習問題11-3】の解答

鮒27? (2017-02-02 (木) 21:12:22)

4行目ですが
この式を同次に変えた・・・
となっていましたのでお知らせします。(他は斉次で統一されています。)

  • ご指摘ありがとうございます。 -- 前野? 2017-02-03 (金) 06:59:44

P.162【演習問題10-5】についての質問です。

鮒27? (2017-01-28 (土) 00:04:46)

下記のような解答でも、証明したことになりますでしょうか?
ご確認いただければ幸いです。
$\displaystyle \frac{d}{dx}g(x)=p(x)g(x)$
$\displaystyle \frac{\frac{d}{dx}g(x)}{g(x)}=p(x)$
両辺を積分して
$ \displaystyle \log{g(x)}=P(x)+c $
(P(x)はp(x)の原始関数, cは積分定数)
$ \displaystyle g(x)=Ce^{P(X)} $
同様に
$ \displaystyle h(x)=De^{P(X)} $
従って
$ \displaystyle g(x)=\frac{C}{D}h(x) $
となりg(x)はh(x)の定数倍である。

  • 証明したことにはなってます。ただこれだと「解いている」ということなので、解答にあるように「答えを解かなくてもわかる」という解法に比べると、少し手間が多くなっているということになります。 -- 前野? 2017-01-28 (土) 00:36:51
  • 分かりました。ご確認いただき、ありがとうございます。 -- 鮒27? 2017-01-30 (月) 19:48:54

P.184 (B.40)について

鮒27? (2017-01-27 (金) 22:23:33)

(B.40)の$\displaystyle \frac{d}{dt}A(t)$
ですが
$\displaystyle -\frac{F_0}{2m\omega_0}sin{2\omega_0t}$
ではないでしょか?(マイナスが付く。)

  • 確かにその通りで、連動してその後の符号も違っているようです。サポートページの方に訂正を載せます。 -- 前野? 2017-01-27 (金) 23:54:04

P.200 【問10-5】の解答

鮒27? (2017-01-27 (金) 00:23:22)

(1)
解答2行目で
$\displaystyle f(x)=\frac{1}{x}f(x)$
とありますが、本文の流儀に従えば
$\displaystyle f(x)=\frac{1}{x}g(x)$
ではないでしょうか。

また次の行からの式が
$\displaystyle \frac{1}{x}\frac{d}{dx}f(x)=x^2$
$\displaystyle f(x)=\frac{x^3}{3}+C$
$\displaystyle f(x)=\frac{x^2}{3}+\frac{C}{x}$
となっていますが
$\displaystyle \frac{1}{x}\frac{d}{dx}g(x)=x^2$
$\displaystyle g(x)=\frac{x^4}{4}+C$
$\displaystyle f(x)=\frac{x^3}{4}+\frac{C}{x}$
ではないでしょうか。

(2)
解答2行目で
$f(x)=cosxf(x)$
となっていますが、本文の流儀に従えば
$f(x)=cosxg(x)$
ではないでしょうか。
4行目、5行目の$f(x)$も$g(x)$のように思います。

  • 確かに、ここは関数の名前を変えなくてはいけないところでした。 -- 前野? 2017-01-27 (金) 02:05:06
  • ご回答ありがとうございます。(1)の解は正しいでしょうか?積分の箇所が誤記かと思います。 -- 鮒27? 2017-01-27 (金) 21:52:06
  • すいません、解も${x^3\over4}+{C\over x}$となります。 -- 前野? 2017-01-27 (金) 23:37:33
  • ご確認いただきましてありがとうございました。 -- 鮒27? 2017-01-28 (土) 00:05:52

P.200 【問い10-4】についての質問です。

鮒27? (2017-01-24 (火) 18:56:52)

(C.53)の式の後で
$cos{\omega_0t}$の係数を取り出した式と
$sin{\omega_0t}$の係数を取り出した式から
どのようにすれば$C(t),D(t)$の解を求めることができるのでしょうか?
連立方程式のように考えてみましたが、うまくいきませんでした。

式を見て、答えを予想するのでしょうか?

  • ここで求めるべきは特解なので、一つ求まればよいわけです。だから簡単なのから探そう、ということで試行錯誤するわけですが、たとえばC(t)=0にして、D(t) がどうなればよいかを考えていけば答えに達します。 -- 前野? 2017-01-25 (水) 08:13:59
  • 分かりました。ありがとうございます。 -- 鮒27? 2017-01-26 (木) 23:49:43

P.152

鮒27? (2017-01-20 (金) 21:38:16)

(10.30)の2行下ですが
線形"同時"微分方程式
となっていましたのでお知らせします。(他は斉次で統一されています。)

  • 御指摘ありがとうございます。次の刷で直します。 -- 前野? 2017-01-23 (月) 05:04:26

P.191 【問い9-5】【問10-1】のヒント

鮒27? (2017-01-17 (火) 23:13:17)

ヒントの順番が逆です。
気になったのでお知らせしました。

  • あ、ほんとだ。つまらないミスが残っていて申し訳ないです。 -- 前野? 2017-01-18 (水) 10:29:44

P.133 注14についての質問です。

鮒27? (2017-01-17 (火) 22:05:28)

注14の最後で
"$y=0$は一般解$y=Ae^x$の$A=0$の場合に含まれているので、
$y\neq0$の条件は外してよい"
とあります。
この場合$A=e^C$なので$A=0$にはならないと思うのですが
$y=0$を解としてしまってよいのでしょうか?

それとも$A=e^C$とは関係なく、$A=0$の場合、微分方程式を満たすので
$y=0$は一般解に含まれる、と考えればよいでしょうか?

  • $C\to -\infty$の極限を取っているという考え方もできますし、$y=0$は代入してみると解だから一般解に含まれる、と考えても大丈夫です。 -- 前野? 2017-01-18 (水) 10:29:07
  • ご回答ありがとうございます。追加で質問です。P.141のFAQを読むと、この$y=0$はP.142の説明にある特異解だと思うのですが、違うのでしょうか? -- 鮒27? 2017-01-18 (水) 19:35:31
  • こちらの場合の$C\to-\infty$の極限は141ページのと違って「定数である$C$がいくら大きくとも〜」という状況になってません(変数の値にかかわらず、$C\to\infty$で$y=0$に達する)。ですから、特異解として別に扱う必要はないです。 -- 前野? 2017-01-19 (木) 00:01:30
  • なるほど納得しました。ありがとうございます。 -- 鮒27? 2017-01-19 (木) 20:03:20

P.137

鮒27? (2017-01-17 (火) 19:11:10)

本文下から2行目
”・・・ロケット見て・・・”

”・・・ロケットから見て・・・”
でしょうか?

  • 確かに、おかしいですね。「ロケットから見て」と訂正します。 -- 前野? 2017-01-18 (水) 10:27:16

P.198 【問9-1】の解答

鮒27? (2017-01-17 (火) 19:08:26)

解答2行目の
$\displaystyle dM=-\frac{\log2}{T}M$

$\displaystyle \frac{dM}{dt}=-\frac{\log2}{T}M$
ではないでしょうか?

  • すいません、その通りです。 -- 前野? 2017-01-18 (水) 10:26:55

P.204 【演習問題8-4】のヒント

鮒27? (2017-01-15 (日) 20:36:04)

$dx^2+dy^2$
$=(3d\theta \times a\sin{\theta}\cos^2\theta)^2+(-3d\theta \times a\cos{\theta}\sin^2\theta)^2$
とありますが
$=(-3d\theta \times asin{\theta}cos^2\theta)^2+(3d\theta \times a\cos{\theta}\sin^2\theta)^2$ かと思います。

  • 正しい微分はそうですね。すいません。 -- 前野? 2017-01-16 (月) 08:37:05

P.204 【演習問題8-2】のヒント

鮒27? (2017-01-15 (日) 20:20:38)

ヒントの最後から2行目において
この両辺に$(t-x_0)^{n-1}$を掛けて・・・
とありますが
この両辺に$(x-t)^{n-1}$を掛けて・・・
かと思います。

  • すいません、確かに解答はそっちでやってますね。修正します。 -- 前野? 2017-01-16 (月) 08:36:43

P.204 【演習問題8-1】のヒント

(2017-01-15 (日) 20:14:19)

ヒントの最後の行
$\displaystyle (t-x_0)=\frac{d}{dt}(\frac{1}{2}(t-x_0)^2)$
となっていますが
$\displaystyle (t-x)=\frac{d}{dt}(\frac{1}{2}(t-x)^2)$
かと思います。

  • こちらの指摘は問題なかったでしょうか? -- 鮒27? 2017-02-11 (土) 15:55:16

P.118 の注11

鮒27? (2017-01-14 (土) 14:20:40)

$\displaystyle \frac{1}{\sqrt{1-x^2}}dx=-sin{\theta}d\theta$

$\displaystyle \frac{1}{\sqrt{1-x^2}}dx=-d\theta$
ではないでしょうか。

  • その通りで、このsinθは不要です。ミスをたくさんみつけていただいてありがとうございます。 -- 前野? 2017-01-14 (土) 21:39:29
  • こちらこそ、質問にご回答いただきありがとうございます。 -- 2017-01-15 (日) 20:44:54

P.114 【問い8-3】についての質問です。

鮒27? (2017-01-13 (金) 18:55:39)

問8-3の解答に積分定数がつかないのは、そもそもテイラー展開が近似式なので積分定数は不要、という理解でよろしいでしょうか?

  • あ、これは本当はつけるべきです。 -- 前野? 2017-01-13 (金) 19:07:05
  • ご回答ありがとうございます。 -- 鮒27? 2017-01-14 (土) 14:21:44

P.108 【演習問題7-1】

鮒27? (2017-01-11 (水) 19:06:58)

問題文中の
$\displaystyle \sum_{k=1}^{\infty}$
ですが、P.97の(7.6)式と比べると
$\displaystyle \sum_{k=1}^{n}$
が正しいように思うのですが?

最終的に$n\to\infty$としているので表記上の違いで同じことなのでしょうか?

  • すいません、これはnが正しいです。 -- 前野? 2017-01-13 (金) 08:38:39

P.199 【問9-3】(2)の解答

鮒27? (2017-01-07 (土) 18:04:20)

(2)解答の上から2行目
$\displaystyle a = \frac{1}{2}\frac{d^2y}{dx}$
となっていますが
$\displaystyle a = \frac{1}{2}\frac{d^2y}{dx^2}$
かと思います。

  • 御指摘の通りです。すいません。 -- 前野? 2017-01-08 (日) 21:46:32

P.101 (8.54)について

鮒27? (2017-01-05 (木) 21:00:52)

ちょっと自信がないのですが・・・
(8.54)とその上の行は
$=8r^2(1+cos\theta)$
$\displaystyle=16r^2cos^2\frac{\theta}{2}$
ではなく
$=8r^2(1-cos\theta)$
$\displaystyle =16r^2sin^2\frac{\theta}{2}$
ではないのでしょうか?
(結果は16rで同じになりましたが。。)

  • すみません、P.101ではなくP.123です。 -- 鮒27? 2017-01-05 (木) 21:01:56
  • 御指摘の通りです。3行目で使う半角公式も、${1-\cos\theta\over2}=\sin^2{\theta\over2}$ですね。 -- 前野? 2017-01-06 (金) 10:15:29

P.191 問い8-5のヒント

鮒27? (2017-01-04 (水) 08:44:20)

あけましておめでとうございます。
早速ですが
$sinh2\theta=$

$sinh(\alpha+\beta)=$
かと思います。ご確認願います。

  • すいません、確かにその通りです(間抜けなミスでした)。 -- 前野? 2017-01-04 (水) 23:08:59

7.3.2 原始関数と不定積分 についての質問です。

鮒27? (2016-12-20 (火) 00:59:01)

以下で示したf(x)ですが、
大文字のF(x)のほうが適切なように思うのですがいかがでしょうか?
お手数をおかけして申し訳ございませんが
前野先生のご意見をお聞かせください。

P.102 7.3.2 1行目 前節で使った記号f(x)
P.102 7.3.2 3行目 という関数f(x)を
P.103 (7.26) f(x)=
P.103 (7.26)の2行下 原始関数f(x)
P.103 (7.26)の3行下 原始関数f(x)

  • すいません、これらは編集段階での置換のミスです。おっしゃる通り、Fに訂正する必要があります。 -- 前野? 2016-12-20 (火) 07:15:08

[P.86] 6.1.3 テイラー展開の例:指数関数 についての質問です。

鮒27? (2016-12-14 (水) 23:05:17)

P.86の中段あたりで、
$\displaystyle |\frac{a_n}{a_n+1}|=n+1$となり、$(n\to\infty)$で$\infty$だから・・・
とありますが
P.86の(6.15)によると
$\displaystyle \lim_{x \to \infty}|\frac{a_n}{a_n+1}|$が存在していれば、それが収束半径になることがわかっている、とあります。
P.86の場合、$\displaystyle \lim_{x \to \infty}|\frac{a_n}{a_n+1}|$は$\infty$となり発散するのですが、この場合も"存在している"と言えるのでしょうか?

  • ああなるほど。$\to\infty$を「存在している」というのはちょっとまずいか。説明の修正を考えます。 -- 前野? 2016-12-15 (木) 05:57:03
  • 追加の説明ありがとうございます。 細かい質問なのですが、(6.15)がどちらも存在しない場合はあるのでしょうか?(この場合の”存在しない”とは(収束半径が0??)) -- 鮒27? 2016-12-15 (木) 20:34:53
  • 極限が存在しない例としては、振動してしまう場合も考えられます。例はさっとは思いつけないですが… -- 前野? 2016-12-16 (金) 07:30:48

P.85 (6.16)

(2016-12-14 (水) 22:27:31)

$\displaystyle \sum_{n=0}(-1)^n(x-2)^n$
ですが
$\displaystyle \sum_{n=0}(-1)^{n+1}(x-2)^n$
かと思います。
( (6.16)の下の赤字の式も ) 

  • これは確かにミスです。訂正します。 -- 前野? 2016-12-15 (木) 06:07:36

P.91 【演習問題6-3】

鮒27? (2016-12-14 (水) 19:30:14)

$\frac{1}{1-x^{10}}$を五階微分に・・・
ですが
$\frac{1}{1-x^{10}}$の五階微分に・・・
もしくは
$\frac{1}{1-x^{10}}$を五階微分して・・・
のほうが意味が取れると思うのですがいかがでしょうか?

  • なるほど確かに。次の版では「の五階微分に」に直したいと思います。 -- 前野? 2016-12-15 (木) 05:54:26

P.83 (6.10)について。

鮒27? (2016-12-12 (月) 19:00:55)

3つ目の式の左辺が
$d/dx(2/(1-x)^2)$
となっていますが
$d/dx(2/(1-x)^3)$
かと思います。

  • おっしゃる通りです。御指摘ありがとうございました。 -- 前野? 2016-12-13 (火) 08:58:11

P209 【演習問題5-1】の解答

(2016-12-10 (土) 17:35:43)

$=(f'(x)g(x))+f(x)'g(x))'$
$= f' '(x)g(x))+f'(x)g'(x)$
$+ f'(x)g'(x))+f(x)''g(x)$
$= f' '(x)g(x))+2f(x)'g'(x)+f(x)' 'g(x)$
となっており、)が余分についていたり、'の位置がおかしいようです。
正しくは
$=(f'(x)g(x)+f(x)g'(x))'$
$= f' '(x)g(x)+f'(x)g'(x)$
$+ f'(x)g'(x)+f(x)g' '(x)$
$= f' '(x)g(x)+2f'(x)g'(x)+f(x)g' '(x)$
かと思います。

  • すみません、変な文章になってしまいましたが、一度ご確認いただければと思います。 -- 鮒27? 2016-12-10 (土) 17:37:30
  • こちらも変ですね(上の文章も修正しました)。次の版で直すようにします。御指摘ありがとうございました。 -- 前野? 2016-12-10 (土) 18:24:57

P209 【演習問題4-4】の解答

鮒27? (2016-12-10 (土) 17:23:50)

演習問題4-4(2)解答の3行目において左辺が
$(1+tan^2x)dy$
となっていますが
$(1+tan^2y)dy$
かと思います。

  • すいません、御指摘の通りです。 -- 前野? 2016-12-10 (土) 18:23:51

P.195 (C.18)について

鮒27? (2016-12-06 (火) 00:13:15)

答えが$=n/n$
となっていますが
$=n/x$
かと思います。ご確認願います。

  • すみません、確かにその通りです。次の版では修正します。 -- 前野? 2016-12-06 (火) 01:09:18

P39 (3.13)について。

鮒27? (2016-12-03 (土) 21:11:46)

$(x+\Delta x)^3 = x^2 + 3x\Delta x + 3x^2(\Delta x)^2 + (\Delta x)^3$
となっていますが
$(x+\Delta x)^3 = x^3 + 3x^2\Delta x + 3x(\Delta x)^2 + (\Delta x)^3$
かと思います。

  • ああ、本当だ。不注意によるミスです。見つけていただいてありがとうございます。 -- 前野? 2016-12-03 (土) 22:43:30

x=aの周り(回り)の表記ゆれについて

hiro2? (2016-06-26 (日) 14:17:14)

前野先生

お世話になっております。
題記について気になりましたのでご連絡いたします。

例えば、p84の(6.13)のひとつ前の行では「x=2の周りで」と
表記されておりますが、p91の演習問題6-4の問題文では
「x=0の回りで」と表記されております。

※その他のページでも題記の表記が統一されておりませんでした。

以上、重箱の隅を突くような指摘で申し訳ありませんが、どちらかに表記(表現)を統一していただければ幸いです。

  • 確かにそうですね。テイラー展開の方は「周りに」に統一した方がよさそうです。 -- 前野? 2016-06-27 (月) 07:52:39
  • ご対応いただきありがとうございます。 -- hiro2? 2016-06-27 (月) 17:24:38

p88とp100の注釈について

hiro2? (2016-06-25 (土) 22:41:13)

いつもお世話になっております。
題記の2点に関して気になりましたのでご連絡いたします。

・p88の注釈にて

「偶関数のテイラー展開では常に、偶数次の項のみが出てくる。」

とありますが、正確には

「偶関数のx=0周りのテイラー展開では常に、偶数次の項のみが出てくる。」

もしくは

「偶関数のマクローリン展開では常に、偶数次の項のみが出てくる。」

だと思います。

・p100の注釈22にて

「f(x)の原始関数は、f(x)のように」

とありますが、正しくは

「f(x)の原始関数は、F(x)のように」

だと思います。

以上、枝葉末節ではありますが第二版では修正していただければと存じます。
それと(新刊が出たばかりではありますが)続刊楽しみにしております。

以上です。

  • hiro2さん、どうも。どちらも御指摘の通りで、次の版では直そうと思います(それにしてもp100のミスは何をやっていたのかと反省しきり)。御指摘ありがとうございした。 -- 前野? 2016-06-26 (日) 00:13:41
  • お休みにも関わらず早速のご対応ありがとうございます。 -- hiro2? 2016-06-26 (日) 13:42:36


トップ   編集 凍結 差分 バックアップ 添付 複製 名前変更 リロード   新規 一覧 単語検索 最終更新   ヘルプ   最終更新のRSS
Last-modified: 2017-03-03 (金) 21:23:54 (20d)